Optimal. Leaf size=16 \[ -1+x+\log \left (-6-x^{\frac {1}{x}} (3+x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x^2+x^{\frac {1}{x}} \left (3+x+4 x^2+x^3+(-3-x) \log (x)\right )}{6 x^2+x^{\frac {1}{x}} \left (3 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {6 \left (3+x+x^2-3 \log (x)-x \log (x)\right )}{x^2 (3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {3+x+4 x^2+x^3-3 \log (x)-x \log (x)}{x^2 (3+x)}\right ) \, dx\\ &=-\left (6 \int \frac {3+x+x^2-3 \log (x)-x \log (x)}{x^2 (3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx\right )+\int \frac {3+x+4 x^2+x^3-3 \log (x)-x \log (x)}{x^2 (3+x)} \, dx\\ &=-\left (6 \int \left (\frac {3+x+x^2-3 \log (x)-x \log (x)}{3 x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}-\frac {3+x+x^2-3 \log (x)-x \log (x)}{9 x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {3+x+x^2-3 \log (x)-x \log (x)}{9 (3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx\right )+\int \left (\frac {3+x+4 x^2+x^3}{x^2 (3+x)}-\frac {\log (x)}{x^2}\right ) \, dx\\ &=\frac {2}{3} \int \frac {3+x+x^2-3 \log (x)-x \log (x)}{x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-\frac {2}{3} \int \frac {3+x+x^2-3 \log (x)-x \log (x)}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-2 \int \frac {3+x+x^2-3 \log (x)-x \log (x)}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx+\int \frac {3+x+4 x^2+x^3}{x^2 (3+x)} \, dx-\int \frac {\log (x)}{x^2} \, dx\\ &=\frac {1}{x}+\frac {\log (x)}{x}+\frac {2}{3} \int \left (\frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}+\frac {3}{x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {x}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}-\frac {\log (x)}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}-\frac {3 \log (x)}{x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx-\frac {2}{3} \int \left (\frac {3}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {x}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {x^2}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}-\frac {3 \log (x)}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}-\frac {x \log (x)}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx-2 \int \left (\frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}+\frac {3}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}+\frac {1}{x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}-\frac {3 \log (x)}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}-\frac {\log (x)}{x \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx+\int \left (1+\frac {1}{x^2}+\frac {1}{3+x}\right ) \, dx\\ &=x+\frac {\log (x)}{x}+\log (3+x)+\frac {2}{3} \int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx+\frac {2}{3} \int \frac {x}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx-\frac {2}{3} \int \frac {x}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-\frac {2}{3} \int \frac {x^2}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-\frac {2}{3} \int \frac {\log (x)}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx+\frac {2}{3} \int \frac {x \log (x)}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-2 \int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx-2 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx+2 \int \frac {\log (x)}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx+6 \int \frac {\log (x)}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx\\ &=x+\frac {\log (x)}{x}+\log (3+x)+\frac {2}{3} \int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx+\frac {2}{3} \int \frac {x}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx-\frac {2}{3} \int \left (\frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}-\frac {3}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx-\frac {2}{3} \int \left (-\frac {3}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}+\frac {x}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}}+\frac {9}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )}\right ) \, dx+\frac {2}{3} \int \frac {\int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx}{x} \, dx-\frac {2}{3} \int \frac {\int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx-3 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx-2 \int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx-2 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-2 \int \frac {\int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx-6 \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {\int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx+(6 \log (x)) \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx\\ &=x+\frac {\log (x)}{x}+\log (3+x)+\frac {2}{3} \int \frac {\int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx}{x} \, dx-\frac {2}{3} \int \left (\frac {\int \frac {1}{6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}} \, dx}{x}-\frac {3 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x}\right ) \, dx-2 \int \frac {\int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx-6 \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {\int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx+(6 \log (x)) \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx\\ &=x+\frac {\log (x)}{x}+\log (3+x)-6 \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {1}{(3+x) \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx-6 \int \frac {\int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx}{x} \, dx+(6 \log (x)) \int \frac {1}{x^2 \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 19, normalized size = 1.19 \begin {gather*} x+\log \left (6+x^{1+\frac {1}{x}}+3 x^{\frac {1}{x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 24, normalized size = 1.50 \begin {gather*} x + \log \left (x + 3\right ) + \log \left (\frac {{\left (x + 3\right )} x^{\left (\frac {1}{x}\right )} + 6}{x + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.44, size = 2339, normalized size = 146.19 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 1.31
method | result | size |
risch | \(x +\ln \left (3+x \right )+\ln \left (x^{\frac {1}{x}}+\frac {6}{3+x}\right )\) | \(21\) |
norman | \(x +\ln \left ({\mathrm e}^{\frac {\ln \relax (x )}{x}} x +3 \,{\mathrm e}^{\frac {\ln \relax (x )}{x}}+6\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 24, normalized size = 1.50 \begin {gather*} x + \log \left (x + 3\right ) + \log \left (\frac {{\left (x + 3\right )} x^{\left (\frac {1}{x}\right )} + 6}{x + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 29, normalized size = 1.81 \begin {gather*} x+\ln \left (x+3\right )+\ln \left (\frac {x\,x^{1/x}+3\,x^{1/x}+6}{x+3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 19, normalized size = 1.19 \begin {gather*} x + \log {\left (x + 3 \right )} + \log {\left (e^{\frac {\log {\relax (x )}}{x}} + \frac {6}{x + 3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________