Optimal. Leaf size=27 \[ \frac {13-e^4+x}{\left (5+\frac {1}{2} e^{(-1+x) x}\right ) x^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-520+40 e^4-20 x+e^{-x+x^2} \left (-52+24 x-50 x^2-4 x^3+e^4 \left (4-2 x+4 x^2\right )\right )}{100 x^3+20 e^{-x+x^2} x^3+e^{-2 x+2 x^2} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-520 \left (1-\frac {e^4}{13}\right )-20 x+e^{-x+x^2} \left (-52+24 x-50 x^2-4 x^3+e^4 \left (4-2 x+4 x^2\right )\right )\right )}{\left (10 e^x+e^{x^2}\right )^2 x^3} \, dx\\ &=\int \left (\frac {20 e^{2 x} \left (-13+e^4+\left (25-2 e^4\right ) x+2 x^2\right )}{\left (10 e^x+e^{x^2}\right )^2 x^2}+\frac {2 e^x \left (-2 \left (13-e^4\right )+\left (12-e^4\right ) x-\left (25-2 e^4\right ) x^2-2 x^3\right )}{\left (10 e^x+e^{x^2}\right ) x^3}\right ) \, dx\\ &=2 \int \frac {e^x \left (-2 \left (13-e^4\right )+\left (12-e^4\right ) x-\left (25-2 e^4\right ) x^2-2 x^3\right )}{\left (10 e^x+e^{x^2}\right ) x^3} \, dx+20 \int \frac {e^{2 x} \left (-13+e^4+\left (25-2 e^4\right ) x+2 x^2\right )}{\left (10 e^x+e^{x^2}\right )^2 x^2} \, dx\\ &=2 \int \left (-\frac {2 e^x}{10 e^x+e^{x^2}}+\frac {2 e^x \left (-13+e^4\right )}{\left (10 e^x+e^{x^2}\right ) x^3}-\frac {e^x \left (-12+e^4\right )}{\left (10 e^x+e^{x^2}\right ) x^2}+\frac {e^x \left (-25+2 e^4\right )}{\left (10 e^x+e^{x^2}\right ) x}\right ) \, dx+20 \int \left (\frac {2 e^{2 x}}{\left (10 e^x+e^{x^2}\right )^2}+\frac {e^{2 x} \left (-13+e^4\right )}{\left (10 e^x+e^{x^2}\right )^2 x^2}-\frac {e^{2 x} \left (-25+2 e^4\right )}{\left (10 e^x+e^{x^2}\right )^2 x}\right ) \, dx\\ &=-\left (4 \int \frac {e^x}{10 e^x+e^{x^2}} \, dx\right )+40 \int \frac {e^{2 x}}{\left (10 e^x+e^{x^2}\right )^2} \, dx-\left (2 \left (25-2 e^4\right )\right ) \int \frac {e^x}{\left (10 e^x+e^{x^2}\right ) x} \, dx+\left (20 \left (25-2 e^4\right )\right ) \int \frac {e^{2 x}}{\left (10 e^x+e^{x^2}\right )^2 x} \, dx+\left (2 \left (12-e^4\right )\right ) \int \frac {e^x}{\left (10 e^x+e^{x^2}\right ) x^2} \, dx-\left (4 \left (13-e^4\right )\right ) \int \frac {e^x}{\left (10 e^x+e^{x^2}\right ) x^3} \, dx-\left (20 \left (13-e^4\right )\right ) \int \frac {e^{2 x}}{\left (10 e^x+e^{x^2}\right )^2 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.67, size = 29, normalized size = 1.07 \begin {gather*} \frac {2 e^x \left (13-e^4+x\right )}{\left (10 e^x+e^{x^2}\right ) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 29, normalized size = 1.07 \begin {gather*} \frac {2 \, {\left (x - e^{4} + 13\right )}}{x^{2} e^{\left (x^{2} - x\right )} + 10 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 29, normalized size = 1.07 \begin {gather*} \frac {2 \, {\left (x - e^{4} + 13\right )}}{x^{2} e^{\left (x^{2} - x\right )} + 10 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 0.85
method | result | size |
risch | \(-\frac {2 \left (-x -13+{\mathrm e}^{4}\right )}{x^{2} \left ({\mathrm e}^{x \left (x -1\right )}+10\right )}\) | \(23\) |
norman | \(\frac {2 x +26-2 \,{\mathrm e}^{4}}{x^{2} \left ({\mathrm e}^{x^{2}-x}+10\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 29, normalized size = 1.07 \begin {gather*} \frac {2 \, {\left (x - e^{4} + 13\right )} e^{x}}{x^{2} e^{\left (x^{2}\right )} + 10 \, x^{2} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.69, size = 24, normalized size = 0.89 \begin {gather*} \frac {2\,\left (x-{\mathrm {e}}^4+13\right )}{x^2\,\left ({\mathrm {e}}^{x^2-x}+10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 0.89 \begin {gather*} \frac {2 x - 2 e^{4} + 26}{x^{2} e^{x^{2} - x} + 10 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________