Optimal. Leaf size=17 \[ -1+e^{-3+\frac {3}{2 x}-x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {12, 14, 6706} \begin {gather*} x+e^{-x+\frac {3}{2 x}-3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {2 x^2+e^{\frac {3-6 x-2 x^2}{2 x}} \left (-3-2 x^2\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (2-\frac {e^{-3+\frac {3}{2 x}-x} \left (3+2 x^2\right )}{x^2}\right ) \, dx\\ &=x-\frac {1}{2} \int \frac {e^{-3+\frac {3}{2 x}-x} \left (3+2 x^2\right )}{x^2} \, dx\\ &=e^{-3+\frac {3}{2 x}-x}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 16, normalized size = 0.94 \begin {gather*} e^{-3+\frac {3}{2 x}-x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 18, normalized size = 1.06 \begin {gather*} x + e^{\left (-\frac {2 \, x^{2} + 6 \, x - 3}{2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 18, normalized size = 1.06 \begin {gather*} x + e^{\left (-\frac {2 \, x^{2} + 6 \, x - 3}{2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 1.12
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {2 x^{2}+6 x -3}{2 x}}\) | \(19\) |
norman | \(\frac {x^{2}+x \,{\mathrm e}^{\frac {-2 x^{2}-6 x +3}{2 x}}}{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 13, normalized size = 0.76 \begin {gather*} x + e^{\left (-x + \frac {3}{2 \, x} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.12, size = 13, normalized size = 0.76 \begin {gather*} x+{\mathrm {e}}^{\frac {3}{2\,x}-x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.82 \begin {gather*} x + e^{\frac {- x^{2} - 3 x + \frac {3}{2}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________