Optimal. Leaf size=20 \[ 3-4 e^2 \left (-e^{4+x}+\frac {3}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {14, 2194} \begin {gather*} 4 e^{x+6}-\frac {12 e^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 e^{6+x}+\frac {12 e^2}{x^2}\right ) \, dx\\ &=-\frac {12 e^2}{x}+4 \int e^{6+x} \, dx\\ &=4 e^{6+x}-\frac {12 e^2}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.80 \begin {gather*} 4 e^2 \left (e^{4+x}-\frac {3}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 16, normalized size = 0.80 \begin {gather*} \frac {4 \, {\left (x e^{\left (x + 6\right )} - 3 \, e^{2}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.11, size = 16, normalized size = 0.80 \begin {gather*} \frac {4 \, {\left (x e^{\left (x + 6\right )} - 3 \, e^{2}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.75
method | result | size |
risch | \(-\frac {12 \,{\mathrm e}^{2}}{x}+4 \,{\mathrm e}^{x +6}\) | \(15\) |
norman | \(\frac {4 x \,{\mathrm e}^{2} {\mathrm e}^{4+x}-12 \,{\mathrm e}^{2}}{x}\) | \(19\) |
derivativedivides | \(4 \,{\mathrm e}^{2} \left ({\mathrm e}^{4+x}-24 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )-\frac {16 \,{\mathrm e}^{4+x}}{x}\right )-\frac {12 \,{\mathrm e}^{2}}{x}+64 \,{\mathrm e}^{2} \left (-\frac {{\mathrm e}^{4+x}}{x}-{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )\right )-32 \,{\mathrm e}^{2} \left (-5 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )-\frac {4 \,{\mathrm e}^{4+x}}{x}\right )\) | \(82\) |
default | \(4 \,{\mathrm e}^{2} \left ({\mathrm e}^{4+x}-24 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )-\frac {16 \,{\mathrm e}^{4+x}}{x}\right )-\frac {12 \,{\mathrm e}^{2}}{x}+64 \,{\mathrm e}^{2} \left (-\frac {{\mathrm e}^{4+x}}{x}-{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )\right )-32 \,{\mathrm e}^{2} \left (-5 \,{\mathrm e}^{4} \expIntegralEi \left (1, -x \right )-\frac {4 \,{\mathrm e}^{4+x}}{x}\right )\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 14, normalized size = 0.70 \begin {gather*} -\frac {12 \, e^{2}}{x} + 4 \, e^{\left (x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 14, normalized size = 0.70 \begin {gather*} 4\,{\mathrm {e}}^6\,{\mathrm {e}}^x-\frac {12\,{\mathrm {e}}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.75 \begin {gather*} 4 e^{2} e^{x + 4} - \frac {12 e^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________