Optimal. Leaf size=17 \[ \log (2) \left (5+\frac {2+e}{5+\log (x)}\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 0.21, antiderivative size = 58, normalized size of antiderivative = 3.41, number of steps used = 10, number of rules used = 3, integrand size = 112, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6, 12, 1850} \begin {gather*} \frac {500 (2+e) \log (2)}{\log (x)+5}+\frac {150 (2+e)^2 \log (2)}{(\log (x)+5)^2}+\frac {20 (2+e)^3 \log (2)}{(\log (x)+5)^3}+\frac {(2+e)^4 \log (2)}{(\log (x)+5)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+21870 x \log (2)+12555 e x \log (2)+840 e^2 x \log (2)+15 e^3 x \log (2)+4050 x^2 \log (2)+2175 e x^2 \log (2)+75 e^2 x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+840 e^2 x \log (2)+15 e^3 x \log (2)+(21870+12555 e) x \log (2)+4050 x^2 \log (2)+2175 e x^2 \log (2)+75 e^2 x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+(21870+12555 e) x \log (2)+\left (840 e^2+15 e^3\right ) x \log (2)+4050 x^2 \log (2)+2175 e x^2 \log (2)+75 e^2 x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+\left (21870+12555 e+840 e^2+15 e^3\right ) x \log (2)+4050 x^2 \log (2)+2175 e x^2 \log (2)+75 e^2 x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+\left (21870+12555 e+840 e^2+15 e^3\right ) x \log (2)+75 e^2 x^2 \log (2)+(4050+2175 e) x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+\left (21870+12555 e+840 e^2+15 e^3\right ) x \log (2)+\left (4050+2175 e+75 e^2\right ) x^2 \log (2)+250 x^3 \log (2)+125 e x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int -\frac {4 \left (39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+\left (21870+12555 e+840 e^2+15 e^3\right ) x \log (2)+\left (4050+2175 e+75 e^2\right ) x^2 \log (2)+(250+125 e) x^3 \log (2)\right )}{(5+x)^5} \, dx,x,\log (x)\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {39366 \log (2)+24057 e \log (2)+2349 e^2 \log (2)+83 e^3 \log (2)+e^4 \log (2)+\left (21870+12555 e+840 e^2+15 e^3\right ) x \log (2)+\left (4050+2175 e+75 e^2\right ) x^2 \log (2)+(250+125 e) x^3 \log (2)}{(5+x)^5} \, dx,x,\log (x)\right )\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \left (\frac {(2+e)^4 \log (2)}{(5+x)^5}+\frac {15 (2+e)^3 \log (2)}{(5+x)^4}+\frac {75 (2+e)^2 \log (2)}{(5+x)^3}+\frac {125 (2+e) \log (2)}{(5+x)^2}\right ) \, dx,x,\log (x)\right )\right )\\ &=\frac {(2+e)^4 \log (2)}{(5+\log (x))^4}+\frac {20 (2+e)^3 \log (2)}{(5+\log (x))^3}+\frac {150 (2+e)^2 \log (2)}{(5+\log (x))^2}+\frac {500 (2+e) \log (2)}{5+\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 48, normalized size = 2.82 \begin {gather*} \frac {(2+e) \log (2) \left ((2+e)^3+20 (2+e)^2 (5+\log (x))+150 (2+e) (5+\log (x))^2+500 (5+\log (x))^3\right )}{(5+\log (x))^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 91, normalized size = 5.35 \begin {gather*} \frac {500 \, {\left (e + 2\right )} \log \relax (2) \log \relax (x)^{3} + 150 \, {\left (e^{2} + 54 \, e + 104\right )} \log \relax (2) \log \relax (x)^{2} + 20 \, {\left (e^{3} + 81 \, e^{2} + 2187 \, e + 4058\right )} \log \relax (2) \log \relax (x) + {\left (e^{4} + 108 \, e^{3} + 4374 \, e^{2} + 78732 \, e + 140816\right )} \log \relax (2)}{\log \relax (x)^{4} + 20 \, \log \relax (x)^{3} + 150 \, \log \relax (x)^{2} + 500 \, \log \relax (x) + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 111, normalized size = 6.53 \begin {gather*} \frac {500 \, e \log \relax (2) \log \relax (x)^{3} + 150 \, e^{2} \log \relax (2) \log \relax (x)^{2} + 8100 \, e \log \relax (2) \log \relax (x)^{2} + 1000 \, \log \relax (2) \log \relax (x)^{3} + 20 \, e^{3} \log \relax (2) \log \relax (x) + 1620 \, e^{2} \log \relax (2) \log \relax (x) + 43740 \, e \log \relax (2) \log \relax (x) + 15600 \, \log \relax (2) \log \relax (x)^{2} + e^{4} \log \relax (2) + 108 \, e^{3} \log \relax (2) + 4374 \, e^{2} \log \relax (2) + 78732 \, e \log \relax (2) + 81160 \, \log \relax (2) \log \relax (x) + 140816 \, \log \relax (2)}{{\left (\log \relax (x) + 5\right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 70, normalized size = 4.12
method | result | size |
default | \(-4 \ln \relax (2) \left ({\mathrm e}+2\right ) \left (-\frac {15 \,{\mathrm e}^{2}+60 \,{\mathrm e}+60}{3 \left (5+\ln \relax (x )\right )^{3}}-\frac {{\mathrm e}^{3}+6 \,{\mathrm e}^{2}+12 \,{\mathrm e}+8}{4 \left (5+\ln \relax (x )\right )^{4}}-\frac {125}{5+\ln \relax (x )}-\frac {75 \,{\mathrm e}+150}{2 \left (5+\ln \relax (x )\right )^{2}}\right )\) | \(70\) |
risch | \(\frac {\ln \relax (2) \left ({\mathrm e}^{4}+20 \ln \relax (x ) {\mathrm e}^{3}+150 \,{\mathrm e}^{2} \ln \relax (x )^{2}+500 \ln \relax (x )^{3} {\mathrm e}+108 \,{\mathrm e}^{3}+1620 \,{\mathrm e}^{2} \ln \relax (x )+8100 \,{\mathrm e} \ln \relax (x )^{2}+1000 \ln \relax (x )^{3}+4374 \,{\mathrm e}^{2}+43740 \,{\mathrm e} \ln \relax (x )+15600 \ln \relax (x )^{2}+78732 \,{\mathrm e}+81160 \ln \relax (x )+140816\right )}{\left (5+\ln \relax (x )\right )^{4}}\) | \(84\) |
norman | \(\frac {\left (500 \,{\mathrm e} \ln \relax (2)+1000 \ln \relax (2)\right ) \ln \relax (x )^{3}+\left (150 \,{\mathrm e}^{2} \ln \relax (2)+8100 \,{\mathrm e} \ln \relax (2)+15600 \ln \relax (2)\right ) \ln \relax (x )^{2}+\left (20 \,{\mathrm e}^{3} \ln \relax (2)+1620 \,{\mathrm e}^{2} \ln \relax (2)+43740 \,{\mathrm e} \ln \relax (2)+81160 \ln \relax (2)\right ) \ln \relax (x )+78732 \,{\mathrm e} \ln \relax (2)+140816 \ln \relax (2)+4374 \,{\mathrm e}^{2} \ln \relax (2)+108 \,{\mathrm e}^{3} \ln \relax (2)+{\mathrm e}^{4} \ln \relax (2)}{\left (5+\ln \relax (x )\right )^{4}}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 692, normalized size = 40.71 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 62, normalized size = 3.65 \begin {gather*} \frac {500\,\ln \relax (2)\,\left (\mathrm {e}+2\right )}{\ln \relax (x)+5}+\frac {150\,\ln \relax (2)\,{\left (\mathrm {e}+2\right )}^2}{{\left (\ln \relax (x)+5\right )}^2}+\frac {20\,\ln \relax (2)\,{\left (\mathrm {e}+2\right )}^3}{{\left (\ln \relax (x)+5\right )}^3}+\frac {\ln \relax (2)\,{\left (\mathrm {e}+2\right )}^4}{{\left (\ln \relax (x)+5\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 141, normalized size = 8.29 \begin {gather*} \frac {\left (1000 \log {\relax (2 )} + 500 e \log {\relax (2 )}\right ) \log {\relax (x )}^{3} + \left (150 e^{2} \log {\relax (2 )} + 15600 \log {\relax (2 )} + 8100 e \log {\relax (2 )}\right ) \log {\relax (x )}^{2} + \left (20 e^{3} \log {\relax (2 )} + 1620 e^{2} \log {\relax (2 )} + 81160 \log {\relax (2 )} + 43740 e \log {\relax (2 )}\right ) \log {\relax (x )} + e^{4} \log {\relax (2 )} + 108 e^{3} \log {\relax (2 )} + 4374 e^{2} \log {\relax (2 )} + 140816 \log {\relax (2 )} + 78732 e \log {\relax (2 )}}{\log {\relax (x )}^{4} + 20 \log {\relax (x )}^{3} + 150 \log {\relax (x )}^{2} + 500 \log {\relax (x )} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________