Optimal. Leaf size=28 \[ \frac {16 (-3+x)}{x}+\frac {16 \left (16-e^{-1/x} x\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 36, normalized size of antiderivative = 1.29, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {6742, 2288, 2209, 37} \begin {gather*} \frac {(512-3 x)^2}{64 x^2}+16 e^{-2/x}-\frac {512 e^{-1/x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 37
Rule 2209
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {512 e^{-1/x} (-1+x)}{x^3}+\frac {32 e^{-2/x}}{x^2}+\frac {16 (-512+3 x)}{x^3}\right ) \, dx\\ &=16 \int \frac {-512+3 x}{x^3} \, dx+32 \int \frac {e^{-2/x}}{x^2} \, dx+512 \int \frac {e^{-1/x} (-1+x)}{x^3} \, dx\\ &=16 e^{-2/x}+\frac {(512-3 x)^2}{64 x^2}-\frac {512 e^{-1/x}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 32, normalized size = 1.14 \begin {gather*} 16 \left (e^{-2/x}+\frac {256}{x^2}-\frac {3}{x}-\frac {32 e^{-1/x}}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 35, normalized size = 1.25 \begin {gather*} \frac {16 \, {\left (x^{2} - {\left (3 \, x - 256\right )} e^{\frac {2}{x}} - 32 \, x e^{\frac {1}{x}}\right )} e^{\left (-\frac {2}{x}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 30, normalized size = 1.07 \begin {gather*} -\frac {512 \, e^{\left (-\frac {1}{x}\right )}}{x} - \frac {48}{x} + \frac {4096}{x^{2}} + 16 \, e^{\left (-\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.07
method | result | size |
risch | \(\frac {-48 x +4096}{x^{2}}-\frac {512 \,{\mathrm e}^{-\frac {1}{x}}}{x}+16 \,{\mathrm e}^{-\frac {2}{x}}\) | \(30\) |
derivativedivides | \(\frac {4096}{x^{2}}-\frac {48}{x}+16 \,{\mathrm e}^{-\frac {2}{x}}-\frac {512 \,{\mathrm e}^{-\frac {1}{x}}}{x}\) | \(31\) |
default | \(\frac {4096}{x^{2}}-\frac {48}{x}+16 \,{\mathrm e}^{-\frac {2}{x}}-\frac {512 \,{\mathrm e}^{-\frac {1}{x}}}{x}\) | \(31\) |
norman | \(\frac {\left (16 x^{2}+4096 \,{\mathrm e}^{\frac {2}{x}}-512 x \,{\mathrm e}^{\frac {1}{x}}-48 x \,{\mathrm e}^{\frac {2}{x}}\right ) {\mathrm e}^{-\frac {2}{x}}}{x^{2}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 34, normalized size = 1.21 \begin {gather*} -\frac {48}{x} + \frac {4096}{x^{2}} + 512 \, e^{\left (-\frac {1}{x}\right )} + 16 \, e^{\left (-\frac {2}{x}\right )} - 512 \, \Gamma \left (2, \frac {1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.22, size = 30, normalized size = 1.07 \begin {gather*} 16\,{\mathrm {e}}^{-\frac {2}{x}}-\frac {48\,x-4096}{x^2}-\frac {512\,{\mathrm {e}}^{-\frac {1}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.86 \begin {gather*} \frac {16 x e^{- \frac {2}{x}} - 512 e^{- \frac {1}{x}}}{x} + \frac {4096 - 48 x}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________