Optimal. Leaf size=27 \[ \frac {64 x}{\left (5-e^2\right )^2 (3-x) \log \left (\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-192+64 x+192 \log \left (\frac {x}{4}\right )}{\left (225-150 x+25 x^2+e^2 \left (-90+60 x-10 x^2\right )+e^4 \left (9-6 x+x^2\right )\right ) \log ^2\left (\frac {x}{4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64 \left (-3+x+3 \log \left (\frac {x}{4}\right )\right )}{\left (5-e^2\right )^2 (3-x)^2 \log ^2\left (\frac {x}{4}\right )} \, dx\\ &=\frac {64 \int \frac {-3+x+3 \log \left (\frac {x}{4}\right )}{(3-x)^2 \log ^2\left (\frac {x}{4}\right )} \, dx}{\left (5-e^2\right )^2}\\ &=\frac {256 \operatorname {Subst}\left (\int \frac {-3+4 x+3 \log (x)}{(3-4 x)^2 \log ^2(x)} \, dx,x,\frac {x}{4}\right )}{\left (5-e^2\right )^2}\\ &=\frac {256 \operatorname {Subst}\left (\int \left (\frac {1}{(-3+4 x) \log ^2(x)}+\frac {3}{(-3+4 x)^2 \log (x)}\right ) \, dx,x,\frac {x}{4}\right )}{\left (5-e^2\right )^2}\\ &=\frac {256 \operatorname {Subst}\left (\int \frac {1}{(-3+4 x) \log ^2(x)} \, dx,x,\frac {x}{4}\right )}{\left (5-e^2\right )^2}+\frac {768 \operatorname {Subst}\left (\int \frac {1}{(-3+4 x)^2 \log (x)} \, dx,x,\frac {x}{4}\right )}{\left (5-e^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 0.85 \begin {gather*} -\frac {64 x}{\left (-5+e^2\right )^2 (-3+x) \log \left (\frac {x}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 29, normalized size = 1.07 \begin {gather*} -\frac {64 \, x}{{\left ({\left (x - 3\right )} e^{4} - 10 \, {\left (x - 3\right )} e^{2} + 25 \, x - 75\right )} \log \left (\frac {1}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 52, normalized size = 1.93 \begin {gather*} -\frac {64 \, x}{x e^{4} \log \left (\frac {1}{4} \, x\right ) - 10 \, x e^{2} \log \left (\frac {1}{4} \, x\right ) + 25 \, x \log \left (\frac {1}{4} \, x\right ) - 3 \, e^{4} \log \left (\frac {1}{4} \, x\right ) + 30 \, e^{2} \log \left (\frac {1}{4} \, x\right ) - 75 \, \log \left (\frac {1}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 21, normalized size = 0.78
method | result | size |
norman | \(-\frac {64 x}{\left ({\mathrm e}^{2}-5\right )^{2} \left (x -3\right ) \ln \left (\frac {x}{4}\right )}\) | \(21\) |
risch | \(-\frac {64 x}{\left (x \,{\mathrm e}^{4}-3 \,{\mathrm e}^{4}-10 \,{\mathrm e}^{2} x +30 \,{\mathrm e}^{2}+25 x -75\right ) \ln \left (\frac {x}{4}\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 65, normalized size = 2.41 \begin {gather*} \frac {64 \, x}{2 \, {\left (e^{4} \log \relax (2) - 10 \, e^{2} \log \relax (2) + 25 \, \log \relax (2)\right )} x - 6 \, e^{4} \log \relax (2) + 60 \, e^{2} \log \relax (2) - {\left (x {\left (e^{4} - 10 \, e^{2} + 25\right )} - 3 \, e^{4} + 30 \, e^{2} - 75\right )} \log \relax (x) - 150 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 20, normalized size = 0.74 \begin {gather*} -\frac {64\,x}{\ln \left (\frac {x}{4}\right )\,{\left ({\mathrm {e}}^2-5\right )}^2\,\left (x-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 36, normalized size = 1.33 \begin {gather*} - \frac {64 x}{\left (- 10 x e^{2} + 25 x + x e^{4} - 3 e^{4} - 75 + 30 e^{2}\right ) \log {\left (\frac {x}{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________