Optimal. Leaf size=30 \[ \log \left (3-e^{x^2 \left (5+\frac {5 (2+x)}{\log \left ((7-x)^2\right )}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 33.15, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 4, integrand size = 262, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 12, 6708, 31} \begin {gather*} \log \left (3-\exp \left (\frac {25 x^2 \left (x+\log \left ((x-7)^2\right )+2\right )^2}{\log ^2\left ((x-7)^2\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 6688
Rule 6708
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 \exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right ) x \left (-2 x (2+x)^2+2 \left (-14-21 x-5 x^2+x^3\right ) \log \left ((-7+x)^2\right )+\left (-28-17 x+3 x^2\right ) \log ^2\left ((-7+x)^2\right )+(-7+x) \log ^3\left ((-7+x)^2\right )\right )}{\left (3-\exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right )\right ) (7-x) \log ^3\left ((-7+x)^2\right )} \, dx\\ &=50 \int \frac {\exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right ) x \left (-2 x (2+x)^2+2 \left (-14-21 x-5 x^2+x^3\right ) \log \left ((-7+x)^2\right )+\left (-28-17 x+3 x^2\right ) \log ^2\left ((-7+x)^2\right )+(-7+x) \log ^3\left ((-7+x)^2\right )\right )}{\left (3-\exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right )\right ) (7-x) \log ^3\left ((-7+x)^2\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{3+x} \, dx,x,-\exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right )\right )\\ &=\log \left (3-\exp \left (\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 29, normalized size = 0.97 \begin {gather*} \log \left (-3+e^{\frac {25 x^2 \left (2+x+\log \left ((-7+x)^2\right )\right )^2}{\log ^2\left ((-7+x)^2\right )}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 66, normalized size = 2.20 \begin {gather*} \log \left (e^{\left (\frac {25 \, {\left (x^{4} + x^{2} \log \left (x^{2} - 14 \, x + 49\right )^{2} + 4 \, x^{3} + 4 \, x^{2} + 2 \, {\left (x^{3} + 2 \, x^{2}\right )} \log \left (x^{2} - 14 \, x + 49\right )\right )}}{\log \left (x^{2} - 14 \, x + 49\right )^{2}}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 154, normalized size = 5.13
method | result | size |
risch | \(25 x^{2}+\frac {25 x^{2} \left (x^{2}+2 \ln \left (x^{2}-14 x +49\right ) x +4 x +4 \ln \left (x^{2}-14 x +49\right )+4\right )}{\ln \left (x^{2}-14 x +49\right )^{2}}-\frac {25 x^{2} \ln \left (x^{2}-14 x +49\right )^{2}+\left (50 x^{3}+100 x^{2}\right ) \ln \left (x^{2}-14 x +49\right )+25 x^{4}+100 x^{3}+100 x^{2}}{\ln \left (x^{2}-14 x +49\right )^{2}}+\ln \left ({\mathrm e}^{\frac {25 x^{2} \left (\ln \left (x^{2}-14 x +49\right )+x +2\right )^{2}}{\ln \left (x^{2}-14 x +49\right )^{2}}}-3\right )\) | \(154\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.59, size = 157, normalized size = 5.23 \begin {gather*} \frac {25 \, {\left (x^{2} \log \left (x - 7\right )^{2} + x^{3} + x^{2} + {\left (x^{3} + 2 \, x^{2}\right )} \log \left (x - 7\right )\right )}}{\log \left (x - 7\right )^{2}} + \log \left ({\left (e^{\left (25 \, x^{2} + \frac {25 \, x^{4}}{4 \, \log \left (x - 7\right )^{2}} + \frac {25 \, x^{3}}{\log \left (x - 7\right )} + \frac {25 \, x^{3}}{\log \left (x - 7\right )^{2}} + \frac {50 \, x^{2}}{\log \left (x - 7\right )} + \frac {25 \, x^{2}}{\log \left (x - 7\right )^{2}}\right )} - 3\right )} e^{\left (-25 \, x^{2} - \frac {25 \, x^{3}}{\log \left (x - 7\right )} - \frac {25 \, x^{3}}{\log \left (x - 7\right )^{2}} - \frac {50 \, x^{2}}{\log \left (x - 7\right )} - \frac {25 \, x^{2}}{\log \left (x - 7\right )^{2}}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.75, size = 95, normalized size = 3.17 \begin {gather*} \ln \left ({\mathrm {e}}^{\frac {25\,x^4}{{\ln \left (x^2-14\,x+49\right )}^2}}\,{\mathrm {e}}^{\frac {50\,x^3}{\ln \left (x^2-14\,x+49\right )}}\,{\mathrm {e}}^{\frac {100\,x^2}{\ln \left (x^2-14\,x+49\right )}}\,{\mathrm {e}}^{\frac {100\,x^2}{{\ln \left (x^2-14\,x+49\right )}^2}}\,{\mathrm {e}}^{\frac {100\,x^3}{{\ln \left (x^2-14\,x+49\right )}^2}}\,{\mathrm {e}}^{25\,x^2}-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.17, size = 68, normalized size = 2.27 \begin {gather*} \log {\left (e^{\frac {25 x^{4} + 100 x^{3} + 25 x^{2} \log {\left (x^{2} - 14 x + 49 \right )}^{2} + 100 x^{2} + \left (50 x^{3} + 100 x^{2}\right ) \log {\left (x^{2} - 14 x + 49 \right )}}{\log {\left (x^{2} - 14 x + 49 \right )}^{2}}} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________