Optimal. Leaf size=26 \[ 3-3 x-\frac {1}{4} (10-x) x \log \left (-1+x+\frac {x^4}{4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.55, antiderivative size = 41, normalized size of antiderivative = 1.58, number of steps used = 13, number of rules used = 4, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6742, 2525, 12, 2100} \begin {gather*} \frac {1}{4} (5-x)^2 \log \left (\frac {x^4}{4}+x-1\right )-\frac {25}{4} \log \left (-x^4-4 x+4\right )-3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2100
Rule 2525
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {12-22 x+x^2-13 x^4+x^5}{-4+4 x+x^4}+\frac {1}{2} (-5+x) \log \left (-1+x+\frac {x^4}{4}\right )\right ) \, dx\\ &=\frac {1}{2} \int (-5+x) \log \left (-1+x+\frac {x^4}{4}\right ) \, dx+\int \frac {12-22 x+x^2-13 x^4+x^5}{-4+4 x+x^4} \, dx\\ &=\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )-\frac {1}{4} \int \frac {4 (5-x)^2 \left (-1-x^3\right )}{4-4 x-x^4} \, dx+\int \left (-13+x-\frac {40-34 x+3 x^2}{-4+4 x+x^4}\right ) \, dx\\ &=-13 x+\frac {x^2}{2}+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )-\int \frac {(5-x)^2 \left (-1-x^3\right )}{4-4 x-x^4} \, dx-\int \frac {40-34 x+3 x^2}{-4+4 x+x^4} \, dx\\ &=-13 x+\frac {x^2}{2}+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )-\int \left (-10+x+\frac {15-34 x+3 x^2-25 x^3}{4-4 x-x^4}\right ) \, dx-\int \left (\frac {40}{-4+4 x+x^4}-\frac {34 x}{-4+4 x+x^4}+\frac {3 x^2}{-4+4 x+x^4}\right ) \, dx\\ &=-3 x+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )-3 \int \frac {x^2}{-4+4 x+x^4} \, dx+34 \int \frac {x}{-4+4 x+x^4} \, dx-40 \int \frac {1}{-4+4 x+x^4} \, dx-\int \frac {15-34 x+3 x^2-25 x^3}{4-4 x-x^4} \, dx\\ &=-3 x-\frac {25}{4} \log \left (4-4 x-x^4\right )+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )+\frac {1}{4} \int \frac {-160+136 x-12 x^2}{4-4 x-x^4} \, dx-3 \int \frac {x^2}{-4+4 x+x^4} \, dx+34 \int \frac {x}{-4+4 x+x^4} \, dx-40 \int \frac {1}{-4+4 x+x^4} \, dx\\ &=-3 x-\frac {25}{4} \log \left (4-4 x-x^4\right )+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )+\frac {1}{4} \int \left (\frac {160}{-4+4 x+x^4}-\frac {136 x}{-4+4 x+x^4}+\frac {12 x^2}{-4+4 x+x^4}\right ) \, dx-3 \int \frac {x^2}{-4+4 x+x^4} \, dx+34 \int \frac {x}{-4+4 x+x^4} \, dx-40 \int \frac {1}{-4+4 x+x^4} \, dx\\ &=-3 x-\frac {25}{4} \log \left (4-4 x-x^4\right )+\frac {1}{4} (5-x)^2 \log \left (-1+x+\frac {x^4}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 40, normalized size = 1.54 \begin {gather*} \frac {1}{2} \left (-6 x-5 x \log \left (-1+x+\frac {x^4}{4}\right )+\frac {1}{2} x^2 \log \left (-1+x+\frac {x^4}{4}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 22, normalized size = 0.85 \begin {gather*} \frac {1}{4} \, {\left (x^{2} - 10 \, x\right )} \log \left (\frac {1}{4} \, x^{4} + x - 1\right ) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 22, normalized size = 0.85 \begin {gather*} \frac {1}{4} \, {\left (x^{2} - 10 \, x\right )} \log \left (\frac {1}{4} \, x^{4} + x - 1\right ) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.92
method | result | size |
risch | \(\left (\frac {1}{4} x^{2}-\frac {5}{2} x \right ) \ln \left (\frac {1}{4} x^{4}+x -1\right )-3 x\) | \(24\) |
norman | \(-3 x -\frac {5 \ln \left (\frac {1}{4} x^{4}+x -1\right ) x}{2}+\frac {\ln \left (\frac {1}{4} x^{4}+x -1\right ) x^{2}}{4}\) | \(31\) |
default | \(-\frac {x^{2} \ln \relax (2)}{2}+5 x \ln \relax (2)+\frac {x^{2} \ln \left (x^{4}+4 x -4\right )}{4}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+4 \textit {\_Z} -4\right )}{\sum }\frac {\left (3 \textit {\_R}^{2}-4 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}+1}\right )}{4}-\frac {5 x \ln \left (x^{4}+4 x -4\right )}{2}-3 x +\frac {5 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+4 \textit {\_Z} -4\right )}{\sum }\frac {\left (-3 \textit {\_R} +4\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}+1}\right )}{2}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+4 \textit {\_Z} -4\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}+34 \textit {\_R} -40\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}+1}\right )}{4}\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 34, normalized size = 1.31 \begin {gather*} -\frac {1}{2} \, x^{2} \log \relax (2) + x {\left (5 \, \log \relax (2) - 3\right )} + \frac {1}{4} \, {\left (x^{2} - 10 \, x\right )} \log \left (x^{4} + 4 \, x - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.33, size = 24, normalized size = 0.92 \begin {gather*} -3\,x-\ln \left (\frac {x^4}{4}+x-1\right )\,\left (\frac {5\,x}{2}-\frac {x^2}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.85 \begin {gather*} - 3 x + \left (\frac {x^{2}}{4} - \frac {5 x}{2}\right ) \log {\left (\frac {x^{4}}{4} + x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________