Optimal. Leaf size=26 \[ \log \left (\frac {1}{2} \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+3 \log (x)}{x^2 \log (x)+x \log (x) \log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+3 \log (x)}{x \log (x) \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )} \, dx\\ &=\int \left (\frac {3}{x \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )}-\frac {1}{x \log (x) \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{x \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )} \, dx-\int \frac {1}{x \log (x) \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 22, normalized size = 0.85 \begin {gather*} \log \left (x+\log \left (\frac {e^{-4-x} x^3}{10 \log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 19, normalized size = 0.73 \begin {gather*} \log \left (x + \log \left (\frac {x^{3} e^{\left (-x - 4\right )}}{10 \, \log \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 12, normalized size = 0.46 \begin {gather*} \log \left (\log \left (10\right ) - 3 \, \log \relax (x) + \log \left (\log \relax (x)\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 22, normalized size = 0.85
method | result | size |
default | \(\ln \left (\ln \left (\frac {x^{3} {\mathrm e}^{-4} {\mathrm e}^{-x}}{10 \ln \relax (x )}\right )+x \right )\) | \(22\) |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x}\right )+\frac {i \left (-8 i+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{3} {\mathrm e}^{-x}}{\ln \relax (x )}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right )+6 i \ln \relax (x )+2 i x +\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{3}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i x^{3} {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (\frac {i x^{3} {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{3} {\mathrm e}^{-x}}{\ln \relax (x )}\right )^{2}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2 i \ln \relax (5)-2 i \ln \relax (2)-2 i \ln \left (\ln \relax (x )\right )\right )}{2}\right )\) | \(359\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 14, normalized size = 0.54 \begin {gather*} \log \left (\log \relax (5) + \log \relax (2) - 3 \, \log \relax (x) + \log \left (\log \relax (x)\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.58, size = 13, normalized size = 0.50 \begin {gather*} \ln \left (\ln \left (\frac {x^3}{10\,\ln \relax (x)}\right )-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.73 \begin {gather*} \log {\left (x + \log {\left (\frac {x^{3} e^{- x}}{10 e^{4} \log {\relax (x )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________