Optimal. Leaf size=31 \[ \left (5 e^{-e^{1+x}}-\frac {x}{2 \left (-2-e^{e^5}+x\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+e^{e^5} x+25 e^{-2 e^{1+x}} \left (-4 e^{1+3 e^5+x}+e^{1+2 e^5+x} (-24+12 x)+e^{1+e^5+x} \left (-48+48 x-12 x^2\right )+e^{1+x} \left (-32+48 x-24 x^2+4 x^3\right )\right )+5 e^{-e^{1+x}} \left (8-4 x+e^{2 e^5} \left (2-2 e^{1+x} x\right )+e^{1+x} \left (-8 x+8 x^2-2 x^3\right )+e^{e^5} \left (8-2 x+e^{1+x} \left (-8 x+4 x^2\right )\right )\right )}{16+2 e^{3 e^5}+e^{2 e^5} (12-6 x)-24 x+12 x^2-2 x^3+e^{e^5} \left (24-24 x+6 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (2+e^{e^5}\right ) x+25 e^{-2 e^{1+x}} \left (-4 e^{1+3 e^5+x}+e^{1+2 e^5+x} (-24+12 x)+e^{1+e^5+x} \left (-48+48 x-12 x^2\right )+e^{1+x} \left (-32+48 x-24 x^2+4 x^3\right )\right )+5 e^{-e^{1+x}} \left (8-4 x+e^{2 e^5} \left (2-2 e^{1+x} x\right )+e^{1+x} \left (-8 x+8 x^2-2 x^3\right )+e^{e^5} \left (8-2 x+e^{1+x} \left (-8 x+4 x^2\right )\right )\right )}{16+2 e^{3 e^5}+e^{2 e^5} (12-6 x)-24 x+12 x^2-2 x^3+e^{e^5} \left (24-24 x+6 x^2\right )} \, dx\\ &=\int \frac {e^{-2 e^{1+x}} \left (10 e^{1+2 e^5+x}-2 e^{e^{1+x}} \left (1+\frac {e^{e^5}}{2}\right )-20 e^{1+e^5+x} (-2+x)+10 e^{1+x} (-2+x)^2\right ) \left (-20 \left (1+\frac {e^{e^5}}{2}\right )+10 x-e^{e^{1+x}} x\right )}{2 \left (2+e^{e^5}-x\right )^3} \, dx\\ &=\frac {1}{2} \int \frac {e^{-2 e^{1+x}} \left (10 e^{1+2 e^5+x}-2 e^{e^{1+x}} \left (1+\frac {e^{e^5}}{2}\right )-20 e^{1+e^5+x} (-2+x)+10 e^{1+x} (-2+x)^2\right ) \left (-20 \left (1+\frac {e^{e^5}}{2}\right )+10 x-e^{e^{1+x}} x\right )}{\left (2+e^{e^5}-x\right )^3} \, dx\\ &=\frac {1}{2} \int \left (\frac {10 e^{1-2 e^{1+x}+x} \left (-20 \left (1+\frac {e^{e^5}}{2}\right )+10 x-e^{e^{1+x}} x\right )}{2+e^{e^5}-x}+\frac {e^{-e^{1+x}} \left (2+e^{e^5}\right ) \left (20 \left (1+\frac {e^{e^5}}{2}\right )-10 x+e^{e^{1+x}} x\right )}{\left (2+e^{e^5}-x\right )^3}\right ) \, dx\\ &=5 \int \frac {e^{1-2 e^{1+x}+x} \left (-20 \left (1+\frac {e^{e^5}}{2}\right )+10 x-e^{e^{1+x}} x\right )}{2+e^{e^5}-x} \, dx+\frac {1}{2} \left (2+e^{e^5}\right ) \int \frac {e^{-e^{1+x}} \left (20 \left (1+\frac {e^{e^5}}{2}\right )-10 x+e^{e^{1+x}} x\right )}{\left (2+e^{e^5}-x\right )^3} \, dx\\ &=5 \int \left (-10 e^{1-2 e^{1+x}+x}-\frac {e^{1-e^{1+x}+x} x}{2+e^{e^5}-x}\right ) \, dx+\frac {1}{2} \left (2+e^{e^5}\right ) \int \left (\frac {10 e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2}+\frac {x}{\left (2+e^{e^5}-x\right )^3}\right ) \, dx\\ &=-\left (5 \int \frac {e^{1-e^{1+x}+x} x}{2+e^{e^5}-x} \, dx\right )-50 \int e^{1-2 e^{1+x}+x} \, dx+\frac {1}{2} \left (2+e^{e^5}\right ) \int \frac {x}{\left (2+e^{e^5}-x\right )^3} \, dx+\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2} \, dx\\ &=\frac {x^2}{4 \left (2+e^{e^5}-x\right )^2}-5 \int \left (-e^{1-e^{1+x}+x}+\frac {e^{1-e^{1+x}+x} \left (2+e^{e^5}\right )}{2+e^{e^5}-x}\right ) \, dx-50 \operatorname {Subst}\left (\int e^{1-2 e x} \, dx,x,e^x\right )+\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2} \, dx\\ &=25 e^{-2 e^{1+x}}+\frac {x^2}{4 \left (2+e^{e^5}-x\right )^2}+5 \int e^{1-e^{1+x}+x} \, dx+\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2} \, dx-\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{1-e^{1+x}+x}}{2+e^{e^5}-x} \, dx\\ &=25 e^{-2 e^{1+x}}+\frac {x^2}{4 \left (2+e^{e^5}-x\right )^2}+5 \operatorname {Subst}\left (\int e^{1-e x} \, dx,x,e^x\right )+\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2} \, dx-\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{1-e^{1+x}+x}}{2+e^{e^5}-x} \, dx\\ &=25 e^{-2 e^{1+x}}-5 e^{-e^{1+x}}+\frac {x^2}{4 \left (2+e^{e^5}-x\right )^2}+\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{-e^{1+x}}}{\left (2+e^{e^5}-x\right )^2} \, dx-\left (5 \left (2+e^{e^5}\right )\right ) \int \frac {e^{1-e^{1+x}+x}}{2+e^{e^5}-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.19, size = 86, normalized size = 2.77 \begin {gather*} \frac {1}{2} \left (50 e^{-2 e^{1+x}}+\frac {\left (2+e^{e^5}\right )^2}{2 \left (2+e^{e^5}-x\right )^2}-\frac {2+e^{e^5}}{2+e^{e^5}-x}+\frac {10 e^{-e^{1+x}} x}{2+e^{e^5}-x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 136, normalized size = 4.39 \begin {gather*} \frac {4 \, {\left (x^{2} - 2 \, {\left (x - 2\right )} e^{\left (e^{5}\right )} - 4 \, x + e^{\left (2 \, e^{5}\right )} + 4\right )} e^{\left (2 \, {\left (e^{\left (3 \, e^{5}\right )} \log \relax (5) - e^{\left (x + 3 \, e^{5} + 1\right )}\right )} e^{\left (-3 \, e^{5}\right )}\right )} - 4 \, {\left (x^{2} - x e^{\left (e^{5}\right )} - 2 \, x\right )} e^{\left ({\left (e^{\left (3 \, e^{5}\right )} \log \relax (5) - e^{\left (x + 3 \, e^{5} + 1\right )}\right )} e^{\left (-3 \, e^{5}\right )}\right )} + 2 \, {\left (x - 2\right )} e^{\left (e^{5}\right )} + 4 \, x - e^{\left (2 \, e^{5}\right )} - 4}{4 \, {\left (x^{2} - 2 \, {\left (x - 2\right )} e^{\left (e^{5}\right )} - 4 \, x + e^{\left (2 \, e^{5}\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{\left (x + 1\right )} + {\left (x e^{\left (x + 1\right )} - 1\right )} e^{\left (2 \, e^{5}\right )} - {\left (2 \, {\left (x^{2} - 2 \, x\right )} e^{\left (x + 1\right )} - x + 4\right )} e^{\left (e^{5}\right )} + 2 \, x - 4\right )} e^{\left (-e^{\left (x + 1\right )} + \log \relax (5)\right )} - 4 \, {\left (3 \, {\left (x - 2\right )} e^{\left (x + 2 \, e^{5} + 1\right )} - 3 \, {\left (x^{2} - 4 \, x + 4\right )} e^{\left (x + e^{5} + 1\right )} + {\left (x^{3} - 6 \, x^{2} + 12 \, x - 8\right )} e^{\left (x + 1\right )} - e^{\left (x + 3 \, e^{5} + 1\right )}\right )} e^{\left (-2 \, e^{\left (x + 1\right )} + 2 \, \log \relax (5)\right )} - x e^{\left (e^{5}\right )} - 2 \, x}{2 \, {\left (x^{3} - 6 \, x^{2} + 3 \, {\left (x - 2\right )} e^{\left (2 \, e^{5}\right )} - 3 \, {\left (x^{2} - 4 \, x + 4\right )} e^{\left (e^{5}\right )} + 12 \, x - e^{\left (3 \, e^{5}\right )} - 8\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.39, size = 81, normalized size = 2.61
method | result | size |
risch | \(\frac {\left (1+\frac {{\mathrm e}^{{\mathrm e}^{5}}}{2}\right ) x -\frac {{\mathrm e}^{2 \,{\mathrm e}^{5}}}{4}-{\mathrm e}^{{\mathrm e}^{5}}-1}{{\mathrm e}^{2 \,{\mathrm e}^{5}}-2 x \,{\mathrm e}^{{\mathrm e}^{5}}+x^{2}+4 \,{\mathrm e}^{{\mathrm e}^{5}}-4 x +4}+25 \,{\mathrm e}^{-2 \,{\mathrm e}^{x +1}}+\frac {5 x \,{\mathrm e}^{-{\mathrm e}^{x +1}}}{{\mathrm e}^{{\mathrm e}^{5}}-x +2}\) | \(81\) |
norman | \(\frac {25 x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{x +1}}+\left (1+\frac {{\mathrm e}^{{\mathrm e}^{5}}}{2}\right ) x +25 \left ({\mathrm e}^{2 \,{\mathrm e}^{5}}+4 \,{\mathrm e}^{{\mathrm e}^{5}}+4\right ) {\mathrm e}^{-2 \,{\mathrm e}^{x +1}}+25 \left (-2 \,{\mathrm e}^{{\mathrm e}^{5}}-4\right ) x \,{\mathrm e}^{-2 \,{\mathrm e}^{x +1}}+\left ({\mathrm e}^{{\mathrm e}^{5}}+2\right ) x \,{\mathrm e}^{-{\mathrm e}^{x +1}+\ln \relax (5)}-x^{2} {\mathrm e}^{-{\mathrm e}^{x +1}+\ln \relax (5)}-\frac {{\mathrm e}^{2 \,{\mathrm e}^{5}}}{4}-{\mathrm e}^{{\mathrm e}^{5}}-1}{\left ({\mathrm e}^{{\mathrm e}^{5}}-x +2\right )^{2}}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 114, normalized size = 3.68 \begin {gather*} -\frac {5 \, {\left (x e^{\left (e^{\left (x + 1\right )}\right )} - 5 \, x + 5 \, e^{\left (e^{5}\right )} + 10\right )} e^{\left (-2 \, e^{\left (x + 1\right )}\right )}}{x - e^{\left (e^{5}\right )} - 2} + \frac {{\left (2 \, x - e^{\left (e^{5}\right )} - 2\right )} e^{\left (e^{5}\right )}}{4 \, {\left (x^{2} - 2 \, x {\left (e^{\left (e^{5}\right )} + 2\right )} + e^{\left (2 \, e^{5}\right )} + 4 \, e^{\left (e^{5}\right )} + 4\right )}} + \frac {2 \, x - e^{\left (e^{5}\right )} - 2}{2 \, {\left (x^{2} - 2 \, x {\left (e^{\left (e^{5}\right )} + 2\right )} + e^{\left (2 \, e^{5}\right )} + 4 \, e^{\left (e^{5}\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.72, size = 79, normalized size = 2.55 \begin {gather*} 25\,{\mathrm {e}}^{-2\,\mathrm {e}\,{\mathrm {e}}^x}+\frac {x\,\left ({\mathrm {e}}^{{\mathrm {e}}^5}+2\right )-\frac {{\left ({\mathrm {e}}^{{\mathrm {e}}^5}+2\right )}^2}{2}}{2\,x^2+\left (-4\,{\mathrm {e}}^{{\mathrm {e}}^5}-8\right )\,x+2\,{\mathrm {e}}^{2\,{\mathrm {e}}^5}+8\,{\mathrm {e}}^{{\mathrm {e}}^5}+8}+\frac {5\,x\,{\mathrm {e}}^{-\mathrm {e}\,{\mathrm {e}}^x}}{{\mathrm {e}}^{{\mathrm {e}}^5}-x+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.60, size = 90, normalized size = 2.90 \begin {gather*} \frac {- 5 x e^{- e^{x + 1}} + \left (25 x - 25 e^{e^{5}} - 50\right ) e^{- 2 e^{x + 1}}}{x - e^{e^{5}} - 2} + \frac {\left (- e^{e^{5}} - 2\right ) \left (- 2 x + 2 + e^{e^{5}}\right )}{4 x^{2} + x \left (- 8 e^{e^{5}} - 16\right ) + 16 + 16 e^{e^{5}} + 4 e^{2 e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________