Optimal. Leaf size=26 \[ \frac {1}{\log \left (e^{x (1+x)} \left (\frac {1}{5}+e^x+x+\frac {x^2}{4}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24+e^x (-40-40 x)-38 x-45 x^2-10 x^3}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 (1+x)}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}+\frac {-16+10 x+5 x^2}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1+x}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx\right )+\int \frac {-16+10 x+5 x^2}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx\\ &=-\left (2 \int \left (\frac {1}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}+\frac {x}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}\right ) \, dx\right )+\int \left (-\frac {16}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}+\frac {10 x}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}+\frac {5 x^2}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx\right )-2 \int \frac {x}{\log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx+5 \int \frac {x^2}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx+10 \int \frac {x}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx-16 \int \frac {1}{\left (4+20 e^x+20 x+5 x^2\right ) \log ^2\left (\frac {1}{20} e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 33, normalized size = 1.27 \begin {gather*} -\frac {1}{\log (20)-\log \left (e^{x+x^2} \left (4+20 e^x+20 x+5 x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 25, normalized size = 0.96 \begin {gather*} \frac {1}{\log \left (\frac {1}{20} \, {\left (5 \, x^{2} + 20 \, x + 20 \, e^{x} + 4\right )} e^{\left (x^{2} + x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{x^{2} + x - \log \left (20\right ) + \log \left (5 \, x^{2} + 20 \, x + 20 \, e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 194, normalized size = 7.46
method | result | size |
risch | \(\frac {2 i}{\pi \,\mathrm {csgn}\left (i \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x} \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right )-\pi \,\mathrm {csgn}\left (i \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x} \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x} \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{\left (x +1\right ) x} \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )\right )^{3}-4 i \ln \relax (2)+2 i \ln \left (x^{2}+4 x +4 \,{\mathrm e}^{x}+\frac {4}{5}\right )+2 i \ln \left ({\mathrm e}^{\left (x +1\right ) x}\right )}\) | \(194\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 30, normalized size = 1.15 \begin {gather*} \frac {1}{x^{2} + x - \log \relax (5) - 2 \, \log \relax (2) + \log \left (5 \, x^{2} + 20 \, x + 20 \, e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 18, normalized size = 0.69 \begin {gather*} \frac {1}{x+\ln \left (x+{\mathrm {e}}^x+\frac {x^2}{4}+\frac {1}{5}\right )+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 22, normalized size = 0.85 \begin {gather*} \frac {1}{\log {\left (\left (\frac {x^{2}}{4} + x + e^{x} + \frac {1}{5}\right ) e^{x^{2} + x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________