Optimal. Leaf size=30 \[ \frac {\log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{-e^x+x} \]
________________________________________________________________________________________
Rubi [F] time = 6.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x-x^4+e^x \left (36+x^3\right )+\left (-e^x x^3+x^4\right ) \log (x)+\left (2 x^5-2 e^x x^5+\left (-x^5+e^x x^5\right ) \log \left (3 e^{\frac {9}{x^4}}\right )+\left (x^4-e^x x^4\right ) \log (x)\right ) \log \left (\frac {-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)}{x}\right )}{-2 e^{2 x} x^5+4 e^x x^6-2 x^7+\left (e^{2 x} x^5-2 e^x x^6+x^7\right ) \log \left (3 e^{\frac {9}{x^4}}\right )+\left (-e^{2 x} x^4+2 e^x x^5-x^6\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (e^x-x\right ) \left (36+x^3\right )\right )-\left (-1+e^x\right ) x^5 \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )\right ) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )+x^3 \log (x) \left (e^x-x+\left (-1+e^x\right ) x \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )\right )}{\left (e^x-x\right )^2 x^4 \left (2 x-x \log \left (3 e^{\frac {9}{x^4}}\right )+\log (x)\right )} \, dx\\ &=\int \left (\frac {(-1+x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2}+\frac {36+x^3-x^3 \log (x)-2 x^5 \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )+x^5 \log \left (3 e^{\frac {9}{x^4}}\right ) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )-x^4 \log (x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) x^4 \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}\right ) \, dx\\ &=\int \frac {(-1+x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2} \, dx+\int \frac {36+x^3-x^3 \log (x)-2 x^5 \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )+x^5 \log \left (3 e^{\frac {9}{x^4}}\right ) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )-x^4 \log (x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) x^4 \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx\\ &=\int \left (-\frac {\log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2}+\frac {x \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2}\right ) \, dx+\int \left (\frac {36}{\left (e^x-x\right ) x^4 \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}+\frac {1}{\left (e^x-x\right ) x \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}-\frac {\log (x)}{\left (e^x-x\right ) x \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}-\frac {2 x \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}+\frac {x \log \left (3 e^{\frac {9}{x^4}}\right ) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}-\frac {\log (x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx\right )+36 \int \frac {1}{\left (e^x-x\right ) x^4 \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx+\int \frac {1}{\left (e^x-x\right ) x \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx-\int \frac {\log (x)}{\left (e^x-x\right ) x \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx-\int \frac {\log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2} \, dx+\int \frac {x \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right )^2} \, dx+\int \frac {x \log \left (3 e^{\frac {9}{x^4}}\right ) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx-\int \frac {\log (x) \log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{\left (e^x-x\right ) \left (-2 x+x \log \left (3 e^{\frac {9}{x^4}}\right )-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 31, normalized size = 1.03 \begin {gather*} -\frac {\log \left (-2+\log \left (3 e^{\frac {9}{x^4}}\right )-\frac {\log (x)}{x}\right )}{e^x-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 34, normalized size = 1.13 \begin {gather*} \frac {\log \left (\frac {x^{4} \log \relax (3) - 2 \, x^{4} - x^{3} \log \relax (x) + 9}{x^{4}}\right )}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.20, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (x^{5} {\mathrm e}^{x}-x^{5}\right ) \ln \left (3 \,{\mathrm e}^{\frac {9}{x^{4}}}\right )+\left (-{\mathrm e}^{x} x^{4}+x^{4}\right ) \ln \relax (x )-2 x^{5} {\mathrm e}^{x}+2 x^{5}\right ) \ln \left (\frac {x \ln \left (3 \,{\mathrm e}^{\frac {9}{x^{4}}}\right )-2 x -\ln \relax (x )}{x}\right )+\left (-{\mathrm e}^{x} x^{3}+x^{4}\right ) \ln \relax (x )+\left (x^{3}+36\right ) {\mathrm e}^{x}-x^{4}-36 x}{\left (x^{5} {\mathrm e}^{2 x}-2 x^{6} {\mathrm e}^{x}+x^{7}\right ) \ln \left (3 \,{\mathrm e}^{\frac {9}{x^{4}}}\right )+\left (-{\mathrm e}^{2 x} x^{4}+2 x^{5} {\mathrm e}^{x}-x^{6}\right ) \ln \relax (x )-2 x^{5} {\mathrm e}^{2 x}+4 x^{6} {\mathrm e}^{x}-2 x^{7}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 32, normalized size = 1.07 \begin {gather*} \frac {\log \left (x^{4} {\left (\log \relax (3) - 2\right )} - x^{3} \log \relax (x) + 9\right ) - 4 \, \log \relax (x)}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int -\frac {36\,x+\ln \left (-\frac {2\,x+\ln \relax (x)-x\,\ln \left (3\,{\mathrm {e}}^{\frac {9}{x^4}}\right )}{x}\right )\,\left (2\,x^5\,{\mathrm {e}}^x-\ln \left (3\,{\mathrm {e}}^{\frac {9}{x^4}}\right )\,\left (x^5\,{\mathrm {e}}^x-x^5\right )-2\,x^5+\ln \relax (x)\,\left (x^4\,{\mathrm {e}}^x-x^4\right )\right )-{\mathrm {e}}^x\,\left (x^3+36\right )+x^4+\ln \relax (x)\,\left (x^3\,{\mathrm {e}}^x-x^4\right )}{\ln \relax (x)\,\left (x^4\,{\mathrm {e}}^{2\,x}-2\,x^5\,{\mathrm {e}}^x+x^6\right )-4\,x^6\,{\mathrm {e}}^x+2\,x^5\,{\mathrm {e}}^{2\,x}-\ln \left (3\,{\mathrm {e}}^{\frac {9}{x^4}}\right )\,\left (x^5\,{\mathrm {e}}^{2\,x}-2\,x^6\,{\mathrm {e}}^x+x^7\right )+2\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________