Optimal. Leaf size=30 \[ \frac {1}{4} \log \left (x-\frac {x}{x+\frac {1}{5} (x+\log (3+5 x-\log (x)))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.37, antiderivative size = 48, normalized size of antiderivative = 1.60, number of steps used = 6, number of rules used = 4, integrand size = 168, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6741, 12, 6742, 6684} \begin {gather*} \frac {\log (x)}{4}+\frac {1}{4} \log (-6 x-\log (5 x-\log (x)+3)+5)-\frac {1}{4} \log (6 x+\log (5 x-\log (x)+3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5-25 x-108 x^2-180 x^3+36 x^2 \log (x)+\left (15-11 x-60 x^2+(-5+12 x) \log (x)\right ) \log (3+5 x-\log (x))+(-3-5 x+\log (x)) \log ^2(3+5 x-\log (x))}{4 x (3+5 x-\log (x)) \left (30 x-36 x^2+5 \log (3+5 x-\log (x))-12 x \log (3+5 x-\log (x))-\log ^2(3+5 x-\log (x))\right )} \, dx\\ &=\frac {1}{4} \int \frac {5-25 x-108 x^2-180 x^3+36 x^2 \log (x)+\left (15-11 x-60 x^2+(-5+12 x) \log (x)\right ) \log (3+5 x-\log (x))+(-3-5 x+\log (x)) \log ^2(3+5 x-\log (x))}{x (3+5 x-\log (x)) \left (30 x-36 x^2+5 \log (3+5 x-\log (x))-12 x \log (3+5 x-\log (x))-\log ^2(3+5 x-\log (x))\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {1}{x}+\frac {-1+23 x+30 x^2-6 x \log (x)}{x (3+5 x-\log (x)) (-5+6 x+\log (3+5 x-\log (x)))}+\frac {1-23 x-30 x^2+6 x \log (x)}{x (3+5 x-\log (x)) (6 x+\log (3+5 x-\log (x)))}\right ) \, dx\\ &=\frac {\log (x)}{4}+\frac {1}{4} \int \frac {-1+23 x+30 x^2-6 x \log (x)}{x (3+5 x-\log (x)) (-5+6 x+\log (3+5 x-\log (x)))} \, dx+\frac {1}{4} \int \frac {1-23 x-30 x^2+6 x \log (x)}{x (3+5 x-\log (x)) (6 x+\log (3+5 x-\log (x)))} \, dx\\ &=\frac {\log (x)}{4}+\frac {1}{4} \log (5-6 x-\log (3+5 x-\log (x)))-\frac {1}{4} \log (6 x+\log (3+5 x-\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 42, normalized size = 1.40 \begin {gather*} \frac {1}{4} (\log (x)+\log (5-6 x-\log (3+5 x-\log (x)))-\log (6 x+\log (3+5 x-\log (x)))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 40, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right )\right ) + \frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right ) - 5\right ) + \frac {1}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 40, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right )\right ) + \frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right ) - 5\right ) + \frac {1}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 41, normalized size = 1.37
method | result | size |
risch | \(\frac {\ln \relax (x )}{4}+\frac {\ln \left (-5+6 x +\ln \left (-\ln \relax (x )+5 x +3\right )\right )}{4}-\frac {\ln \left (6 x +\ln \left (-\ln \relax (x )+5 x +3\right )\right )}{4}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 40, normalized size = 1.33 \begin {gather*} -\frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right )\right ) + \frac {1}{4} \, \log \left (6 \, x + \log \left (5 \, x - \log \relax (x) + 3\right ) - 5\right ) + \frac {1}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {25\,x-36\,x^2\,\ln \relax (x)+{\ln \left (5\,x-\ln \relax (x)+3\right )}^2\,\left (5\,x-\ln \relax (x)+3\right )+\ln \left (5\,x-\ln \relax (x)+3\right )\,\left (11\,x-\ln \relax (x)\,\left (12\,x-5\right )+60\,x^2-15\right )+108\,x^2+180\,x^3-5}{\ln \relax (x)\,\left (120\,x^2-144\,x^3\right )+\ln \left (5\,x-\ln \relax (x)+3\right )\,\left (\ln \relax (x)\,\left (20\,x-48\,x^2\right )-60\,x+44\,x^2+240\,x^3\right )+{\ln \left (5\,x-\ln \relax (x)+3\right )}^2\,\left (12\,x-4\,x\,\ln \relax (x)+20\,x^2\right )-360\,x^2-168\,x^3+720\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________