Optimal. Leaf size=24 \[ -3+x \log (2) \left (x-\log ^2\left (e^{679}-\frac {\log (x)}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{679} x^2 \log (2)+2 x \log (2) \log (x)+(-2 \log (2)+2 \log (2) \log (x)) \log \left (\frac {e^{679} x-\log (x)}{x}\right )+\left (e^{679} x \log (2)-\log (2) \log (x)\right ) \log ^2\left (\frac {e^{679} x-\log (x)}{x}\right )}{-e^{679} x+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (x \log (4)-\frac {2 \log (2) (-1+\log (x)) \log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)}-\log (2) \log ^2\left (e^{679}-\frac {\log (x)}{x}\right )\right ) \, dx\\ &=\frac {1}{2} x^2 \log (4)-\log (2) \int \log ^2\left (e^{679}-\frac {\log (x)}{x}\right ) \, dx-(2 \log (2)) \int \frac {(-1+\log (x)) \log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)} \, dx\\ &=\frac {1}{2} x^2 \log (4)-\log (2) \int \log ^2\left (e^{679}-\frac {\log (x)}{x}\right ) \, dx-(2 \log (2)) \int \left (-\frac {\log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)}+\frac {\log (x) \log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)}\right ) \, dx\\ &=\frac {1}{2} x^2 \log (4)-\log (2) \int \log ^2\left (e^{679}-\frac {\log (x)}{x}\right ) \, dx+(2 \log (2)) \int \frac {\log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)} \, dx-(2 \log (2)) \int \frac {\log (x) \log \left (e^{679}-\frac {\log (x)}{x}\right )}{e^{679} x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.53, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-2 e^{679} x^2 \log (2)+2 x \log (2) \log (x)+(-2 \log (2)+2 \log (2) \log (x)) \log \left (\frac {e^{679} x-\log (x)}{x}\right )+\left (e^{679} x \log (2)-\log (2) \log (x)\right ) \log ^2\left (\frac {e^{679} x-\log (x)}{x}\right )}{-e^{679} x+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 28, normalized size = 1.17 \begin {gather*} -x \log \relax (2) \log \left (\frac {x e^{679} - \log \relax (x)}{x}\right )^{2} + x^{2} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 50, normalized size = 2.08 \begin {gather*} -x \log \relax (2) \log \left (x e^{679} - \log \relax (x)\right )^{2} + 2 \, x \log \relax (2) \log \left (x e^{679} - \log \relax (x)\right ) \log \relax (x) - x \log \relax (2) \log \relax (x)^{2} + x^{2} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 676, normalized size = 28.17
method | result | size |
risch | \(-\ln \relax (2) x \ln \left (-\ln \relax (x )+x \,{\mathrm e}^{679}\right )^{2}+\left (i \pi \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )-i \pi \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{2}+i \pi \ln \relax (2) x \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{2}-i \pi \ln \relax (2) x \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{3}+2 x \ln \relax (2) \ln \relax (x )\right ) \ln \left (-\ln \relax (x )+x \,{\mathrm e}^{679}\right )-\ln \relax (2) x \ln \relax (x )^{2}+i \pi \ln \relax (2) x \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{3} \ln \relax (x )-i \pi \ln \relax (2) x \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{2} \ln \relax (x )-i \pi \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right ) \ln \relax (x )+i \pi \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{2} \ln \relax (x )+\frac {\pi ^{2} \ln \relax (2) x \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{2}}{4}-\frac {\pi ^{2} \ln \relax (2) x \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{3}}{2}+\frac {\pi ^{2} \ln \relax (2) x \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{4}}{4}+\frac {\pi ^{2} \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{3}}{2}-\pi ^{2} \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{4}+\frac {\pi ^{2} \ln \relax (2) x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{5}}{2}+\frac {\pi ^{2} \ln \relax (2) x \mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{4}}{4}-\frac {\pi ^{2} \ln \relax (2) x \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{5}}{2}+\frac {\pi ^{2} \ln \relax (2) x \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \,{\mathrm e}^{679}\right )}{x}\right )^{6}}{4}+x^{2} \ln \relax (2)\) | \(676\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 50, normalized size = 2.08 \begin {gather*} -x \log \relax (2) \log \left (x e^{679} - \log \relax (x)\right )^{2} + 2 \, x \log \relax (2) \log \left (x e^{679} - \log \relax (x)\right ) \log \relax (x) - x \log \relax (2) \log \relax (x)^{2} + x^{2} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.88, size = 24, normalized size = 1.00 \begin {gather*} x\,\ln \relax (2)\,\left (x-{\ln \left (-\frac {\ln \relax (x)-x\,{\mathrm {e}}^{679}}{x}\right )}^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 24, normalized size = 1.00 \begin {gather*} x^{2} \log {\relax (2 )} - x \log {\relax (2 )} \log {\left (\frac {x e^{679} - \log {\relax (x )}}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________