Optimal. Leaf size=28 \[ x \log \left (2-x-\frac {x}{(9-x)^2}-\log \left (\frac {5}{3+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 17.16, antiderivative size = 43, normalized size of antiderivative = 1.54, number of steps used = 46, number of rules used = 3, integrand size = 166, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6742, 6688, 2549} \begin {gather*} x \log \left (\frac {-x^3+20 x^2-118 x-(9-x)^2 \log \left (\frac {5}{x+3}\right )+162}{(9-x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2549
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1485 x}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )}-\frac {255 x^2}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )}+\frac {188 x^3}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )}-\frac {25 x^4}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )}+\frac {x^5}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )}+\log \left (-\frac {-162+118 x-20 x^2+x^3+(-9+x)^2 \log \left (\frac {5}{3+x}\right )}{(-9+x)^2}\right )\right ) \, dx\\ &=-\left (25 \int \frac {x^4}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx\right )+188 \int \frac {x^3}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx-255 \int \frac {x^2}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx-1485 \int \frac {x}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx+\int \frac {x^5}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+81 \log \left (\frac {5}{3+x}\right )-18 x \log \left (\frac {5}{3+x}\right )+x^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx+\int \log \left (-\frac {-162+118 x-20 x^2+x^3+(-9+x)^2 \log \left (\frac {5}{3+x}\right )}{(-9+x)^2}\right ) \, dx\\ &=x \log \left (\frac {162-118 x+20 x^2-x^3-(9-x)^2 \log \left (\frac {5}{3+x}\right )}{(9-x)^2}\right )-25 \int \frac {x^4}{(9-x) (3+x) \left (162-118 x+20 x^2-x^3-(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx+188 \int \frac {x^3}{(9-x) (3+x) \left (162-118 x+20 x^2-x^3-(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx-255 \int \frac {x^2}{(9-x) (3+x) \left (162-118 x+20 x^2-x^3-(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx-1485 \int \frac {x}{(9-x) (3+x) \left (162-118 x+20 x^2-x^3-(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx+\int \frac {x^5}{(9-x) (3+x) \left (162-118 x+20 x^2-x^3-(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx-\int \frac {x \left (-1485-255 x+188 x^2-25 x^3+x^4\right )}{(-9+x) (3+x) \left (-162+118 x-20 x^2+x^3+(-9+x)^2 \log \left (\frac {5}{3+x}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 37, normalized size = 1.32 \begin {gather*} x \log \left (-\frac {-162+118 x-20 x^2+x^3+(-9+x)^2 \log \left (\frac {5}{3+x}\right )}{(-9+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 45, normalized size = 1.61 \begin {gather*} x \log \left (-\frac {x^{3} - 20 \, x^{2} + {\left (x^{2} - 18 \, x + 81\right )} \log \left (\frac {5}{x + 3}\right ) + 118 \, x - 162}{x^{2} - 18 \, x + 81}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.92, size = 65, normalized size = 2.32 \begin {gather*} x \log \left (-x^{3} - x^{2} \log \left (\frac {5}{x + 3}\right ) + 20 \, x^{2} + 18 \, x \log \left (\frac {5}{x + 3}\right ) - 118 \, x - 81 \, \log \left (\frac {5}{x + 3}\right ) + 162\right ) - x \log \left (x^{2} - 18 \, x + 81\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.16, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (x^{4}-24 x^{3}+162 x^{2}-2187\right ) \ln \left (\frac {5}{3+x}\right )+x^{5}-26 x^{4}+211 x^{3}-330 x^{2}-2214 x +4374\right ) \ln \left (\frac {\left (-x^{2}+18 x -81\right ) \ln \left (\frac {5}{3+x}\right )-x^{3}+20 x^{2}-118 x +162}{x^{2}-18 x +81}\right )+x^{5}-25 x^{4}+188 x^{3}-255 x^{2}-1485 x}{\left (x^{4}-24 x^{3}+162 x^{2}-2187\right ) \ln \left (\frac {5}{3+x}\right )+x^{5}-26 x^{4}+211 x^{3}-330 x^{2}-2214 x +4374}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 58, normalized size = 2.07 \begin {gather*} x \log \left (-x^{3} - x^{2} {\left (\log \relax (5) - \log \left (x + 3\right ) - 20\right )} + 2 \, x {\left (9 \, \log \relax (5) - 9 \, \log \left (x + 3\right ) - 59\right )} - 81 \, \log \relax (5) + 81 \, \log \left (x + 3\right ) + 162\right ) - 2 \, x \log \left (x - 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 45, normalized size = 1.61 \begin {gather*} x\,\ln \left (-\frac {118\,x+\ln \left (\frac {5}{x+3}\right )\,\left (x^2-18\,x+81\right )-20\,x^2+x^3-162}{x^2-18\,x+81}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.44, size = 71, normalized size = 2.54 \begin {gather*} \left (x - 1\right ) \log {\left (\frac {- x^{3} + 20 x^{2} - 118 x + \left (- x^{2} + 18 x - 81\right ) \log {\left (\frac {5}{x + 3} \right )} + 162}{x^{2} - 18 x + 81} \right )} + \log {\left (\log {\left (\frac {5}{x + 3} \right )} + \frac {x^{3} - 20 x^{2} + 118 x - 162}{x^{2} - 18 x + 81} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________