Optimal. Leaf size=25 \[ -1-e^{(x+\log (3)) (x+(-2+x) x-\log (4))}+2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 36, normalized size of antiderivative = 1.44, number of steps used = 2, number of rules used = 1, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6706} \begin {gather*} 2 x-3^{x^2-x} e^{x^3-x^2} 4^{-x-\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+\int \exp \left (-x^2+x^3+\left (-x+x^2\right ) \log (3)+(-x-\log (3)) \log (4)\right ) \left (2 x-3 x^2+(1-2 x) \log (3)+\log (4)\right ) \, dx\\ &=-3^{-x+x^2} 4^{-x-\log (3)} e^{-x^2+x^3}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.55, size = 0, normalized size = 0.00 \begin {gather*} \int \left (2+e^{-x^2+x^3+\left (-x+x^2\right ) \log (3)+(-x-\log (3)) \log (4)} \left (2 x-3 x^2+(1-2 x) \log (3)+\log (4)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 35, normalized size = 1.40 \begin {gather*} 2 \, x - e^{\left (x^{3} - x^{2} + {\left (x^{2} - x - 2 \, \log \relax (2)\right )} \log \relax (3) - 2 \, x \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 38, normalized size = 1.52 \begin {gather*} 2 \, x - e^{\left (x^{3} + x^{2} \log \relax (3) - x^{2} - x \log \relax (3) - 2 \, x \log \relax (2) - 2 \, \log \relax (3) \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 32, normalized size = 1.28
method | result | size |
risch | \(2 x -2^{-2 \ln \relax (3)-2 x} 3^{x \left (x -1\right )} {\mathrm e}^{x^{2} \left (x -1\right )}\) | \(32\) |
default | \(2 x -{\mathrm e}^{2 \left (-\ln \relax (3)-x \right ) \ln \relax (2)+\left (x^{2}-x \right ) \ln \relax (3)+x^{3}-x^{2}}\) | \(39\) |
norman | \(2 x -{\mathrm e}^{2 \left (-\ln \relax (3)-x \right ) \ln \relax (2)+\left (x^{2}-x \right ) \ln \relax (3)+x^{3}-x^{2}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.36 \begin {gather*} 2 \, x - e^{\left (x^{3} - x^{2} + {\left (x^{2} - x\right )} \log \relax (3) - 2 \, {\left (x + \log \relax (3)\right )} \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 41, normalized size = 1.64 \begin {gather*} 2\,x-\frac {3^{x^2}\,{\mathrm {e}}^{x^3-x^2}}{2^{2\,\ln \relax (3)}\,2^{2\,x}\,3^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 32, normalized size = 1.28 \begin {gather*} 2 x - e^{x^{3} - x^{2} + \left (- 2 x - 2 \log {\relax (3 )}\right ) \log {\relax (2 )} + \left (x^{2} - x\right ) \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________