Optimal. Leaf size=27 \[ \frac {x \log \left (x^2\right )}{x+\frac {x}{(1+x) \log \left (\frac {5}{4 x^3}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(2+2 x) \log \left (\frac {5}{4 x^3}\right )+\left (2+4 x+2 x^2\right ) \log ^2\left (\frac {5}{4 x^3}\right )+\left (-3-3 x+x \log \left (\frac {5}{4 x^3}\right )\right ) \log \left (x^2\right )}{x+\left (2 x+2 x^2\right ) \log \left (\frac {5}{4 x^3}\right )+\left (x+2 x^2+x^3\right ) \log ^2\left (\frac {5}{4 x^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 (1+x)^2 \log ^2\left (\frac {5}{4 x^3}\right )-3 (1+x) \log \left (x^2\right )+\log \left (\frac {5}{4 x^3}\right ) \left (2+2 x+x \log \left (x^2\right )\right )}{x \left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx\\ &=\int \left (\frac {2 (1+x) \log \left (\frac {5}{4 x^3}\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )}+\frac {\left (-3-3 x+x \log \left (\frac {5}{4 x^3}\right )\right ) \log \left (x^2\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {(1+x) \log \left (\frac {5}{4 x^3}\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )} \, dx+\int \frac {\left (-3-3 x+x \log \left (\frac {5}{4 x^3}\right )\right ) \log \left (x^2\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx\\ &=2 \int \frac {(1+x) \log \left (\frac {5}{4 x^3}\right )}{x+x (1+x) \log \left (\frac {5}{4 x^3}\right )} \, dx+\int \left (-\frac {3 \log \left (x^2\right )}{\left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2}-\frac {3 \log \left (x^2\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2}+\frac {\log \left (\frac {5}{4 x^3}\right ) \log \left (x^2\right )}{\left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2}\right ) \, dx\\ &=2 \int \left (\frac {1}{x}-\frac {1}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )}\right ) \, dx-3 \int \frac {\log \left (x^2\right )}{\left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx-3 \int \frac {\log \left (x^2\right )}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx+\int \frac {\log \left (\frac {5}{4 x^3}\right ) \log \left (x^2\right )}{\left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx\\ &=2 \log (x)-2 \int \frac {1}{x \left (1+\log \left (\frac {5}{4 x^3}\right )+x \log \left (\frac {5}{4 x^3}\right )\right )} \, dx-3 \int \frac {\log \left (x^2\right )}{\left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx-3 \int \frac {\log \left (x^2\right )}{x \left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx+\int \frac {\log \left (\frac {5}{4 x^3}\right ) \log \left (x^2\right )}{\left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx\\ &=2 \log (x)-2 \int \frac {1}{x+x (1+x) \log \left (\frac {5}{4 x^3}\right )} \, dx-3 \int \frac {\log \left (x^2\right )}{\left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx-3 \int \frac {\log \left (x^2\right )}{x \left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx+\int \frac {\log \left (\frac {5}{4 x^3}\right ) \log \left (x^2\right )}{\left (1+(1+x) \log \left (\frac {5}{4 x^3}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 27, normalized size = 1.00 \begin {gather*} 2 \log (x)-\frac {\log \left (x^2\right )}{1+(1+x) \log \left (\frac {5}{4 x^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 32, normalized size = 1.19 \begin {gather*} -\frac {2 \, {\left (x + 1\right )} \log \left (\frac {5}{4 \, x^{3}}\right )^{2} + \log \left (\frac {25}{16}\right )}{3 \, {\left ({\left (x + 1\right )} \log \left (\frac {5}{4 \, x^{3}}\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 81, normalized size = 3.00 \begin {gather*} -\frac {2 \, {\left (x \log \relax (5) - 2 \, x \log \relax (2) + \log \relax (5) - 2 \, \log \relax (2) + 1\right )}}{3 \, {\left (x^{2} \log \relax (5) - 2 \, x^{2} \log \relax (2) - 3 \, x^{2} \log \relax (x) + 2 \, x \log \relax (5) - 4 \, x \log \relax (2) - 6 \, x \log \relax (x) + x + \log \relax (5) - 2 \, \log \relax (2) - 3 \, \log \relax (x) + 1\right )}} + \frac {2}{3 \, {\left (x + 1\right )}} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.48, size = 584, normalized size = 21.63
method | result | size |
risch | \(\frac {2 x \ln \relax (x )+2 \ln \relax (x )+\frac {2}{3}}{x +1}-\frac {4+4 \ln \relax (5)-8 \ln \relax (2)+4 x \ln \relax (5)-8 x \ln \relax (2)-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+2 i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}-i x \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-2 i x \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+2 i x \pi \mathrm {csgn}\left (i x^{3}\right )^{3}}{3 \left (x +1\right ) \left (2+2 \ln \relax (5)-4 \ln \relax (2)-6 \ln \relax (x )+2 x \ln \relax (5)-6 x \ln \relax (x )-4 x \ln \relax (2)+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+i x \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-2 i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i x \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+i x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i x \pi \mathrm {csgn}\left (i x^{3}\right )^{3}\right )}\) | \(584\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 35, normalized size = 1.30 \begin {gather*} -\frac {2 \, \log \relax (x)}{x {\left (\log \relax (5) - 2 \, \log \relax (2)\right )} - 3 \, {\left (x + 1\right )} \log \relax (x) + \log \relax (5) - 2 \, \log \relax (2) + 1} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (\frac {5}{4\,x^3}\right )\,\left (2\,x+2\right )-\ln \left (x^2\right )\,\left (3\,x-x\,\ln \left (\frac {5}{4\,x^3}\right )+3\right )+{\ln \left (\frac {5}{4\,x^3}\right )}^2\,\left (2\,x^2+4\,x+2\right )}{\left (x^3+2\,x^2+x\right )\,{\ln \left (\frac {5}{4\,x^3}\right )}^2+\left (2\,x^2+2\,x\right )\,\ln \left (\frac {5}{4\,x^3}\right )+x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.73, size = 97, normalized size = 3.59 \begin {gather*} \frac {- 8 x \log {\relax (2 )} + 4 x \log {\relax (5 )} - 8 \log {\relax (2 )} + 4 + 4 \log {\relax (5 )}}{- 6 x^{2} \log {\relax (5 )} + 12 x^{2} \log {\relax (2 )} - 12 x \log {\relax (5 )} - 6 x + 24 x \log {\relax (2 )} + \left (9 x^{2} + 18 x + 9\right ) \log {\left (x^{2} \right )} - 6 \log {\relax (5 )} - 6 + 12 \log {\relax (2 )}} + 2 \log {\relax (x )} + \frac {2}{3 x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________