Optimal. Leaf size=32 \[ \frac {2+\frac {x}{2}+\log (5)}{4 \left (-4+e^{1-x}+\frac {\log \left (x^2\right )}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8-18 x-4 \log (5)+e^{1-x} \left (20 x+4 x^2+8 x \log (5)\right )+x \log \left (x^2\right )}{512 x+32 e^{2-2 x} x-256 e^{1-x} x+\left (-64 x+16 e^{1-x} x\right ) \log \left (x^2\right )+2 x \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (4 e x (5+x+\log (25))-2 e^x (4+9 x+\log (25))+e^x x \log \left (x^2\right )\right )}{2 x \left (4 \left (e-4 e^x\right )+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^x \left (4 e x (5+x+\log (25))-2 e^x (4+9 x+\log (25))+e^x x \log \left (x^2\right )\right )}{x \left (4 \left (e-4 e^x\right )+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^x \left (18 x+8 \left (1+\frac {\log (5)}{2}\right )-x \log \left (x^2\right )\right )}{x \left (16-\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )}+\frac {4 e^{1+x} (4+x+\log (25)) \left (2-16 x+x \log \left (x^2\right )\right )}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x \left (18 x+8 \left (1+\frac {\log (5)}{2}\right )-x \log \left (x^2\right )\right )}{x \left (16-\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{1+x} (4+x+\log (25)) \left (2-16 x+x \log \left (x^2\right )\right )}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {18 e^x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )}-\frac {4 e^x (2+\log (5))}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )}+\frac {e^x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )}\right ) \, dx+2 \int \left (\frac {e^{1+x} \left (2-16 x+x \log \left (x^2\right )\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}+\frac {e^{1+x} (4+\log (25)) \left (2-16 x+x \log \left (x^2\right )\right )}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{1+x} \left (2-16 x+x \log \left (x^2\right )\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx-9 \int \frac {e^x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx-(2 (2+\log (5))) \int \frac {e^x}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+(2 (4+\log (25))) \int \frac {e^{1+x} \left (2-16 x+x \log \left (x^2\right )\right )}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+2 \int \left (\frac {2 e^{1+x}}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}-\frac {16 e^{1+x} x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}+\frac {e^{1+x} x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}\right ) \, dx-9 \int \frac {e^x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx-(2 (2+\log (5))) \int \frac {e^x}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+(2 (4+\log (25))) \int \left (-\frac {16 e^{1+x}}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}+\frac {2 e^{1+x}}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}+\frac {e^{1+x} \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{1+x} x \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx+4 \int \frac {e^{1+x}}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx-9 \int \frac {e^x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx-32 \int \frac {e^{1+x} x}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx-(2 (2+\log (5))) \int \frac {e^x}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \, dx+(2 (4+\log (25))) \int \frac {e^{1+x} \log \left (x^2\right )}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx+(4 (4+\log (25))) \int \frac {e^{1+x}}{x \left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx-(32 (4+\log (25))) \int \frac {e^{1+x}}{\left (-16+\log \left (x^2\right )\right ) \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.05, size = 31, normalized size = 0.97 \begin {gather*} \frac {e^x (4+x+\log (25))}{2 \left (4 e-16 e^x+e^x \log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 25, normalized size = 0.78 \begin {gather*} \frac {x + 2 \, \log \relax (5) + 4}{2 \, {\left (4 \, e^{\left (-x + 1\right )} + \log \left (x^{2}\right ) - 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 25, normalized size = 0.78 \begin {gather*} \frac {x + 2 \, \log \relax (5) + 4}{2 \, {\left (4 \, e^{\left (-x + 1\right )} + \log \left (x^{2}\right ) - 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 74, normalized size = 2.31
method | result | size |
risch | \(\frac {i \left (2 \ln \relax (5)+x +4\right )}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+8 i {\mathrm e}^{1-x}+4 i \ln \relax (x )-32 i}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 25, normalized size = 0.78 \begin {gather*} \frac {{\left (x + 2 \, \log \relax (5) + 4\right )} e^{x}}{4 \, {\left ({\left (\log \relax (x) - 8\right )} e^{x} + 2 \, e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {18\,x+4\,\ln \relax (5)-x\,\ln \left (x^2\right )-{\mathrm {e}}^{1-x}\,\left (20\,x+8\,x\,\ln \relax (5)+4\,x^2\right )+8}{2\,x\,{\ln \left (x^2\right )}^2+\left (16\,x\,{\mathrm {e}}^{1-x}-64\,x\right )\,\ln \left (x^2\right )+512\,x-256\,x\,{\mathrm {e}}^{1-x}+32\,x\,{\mathrm {e}}^{2-2\,x}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.69 \begin {gather*} \frac {x + 2 \log {\relax (5 )} + 4}{8 e^{1 - x} + 2 \log {\left (x^{2} \right )} - 32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________