Optimal. Leaf size=33 \[ \log \left (-2+e^{2 x} x \left (x-\frac {3 (-x+(-3+x) x)}{x+\log (4-x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 14.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (15 x^2+20 x^3-4 x^4\right )+e^{2 x} \left (24 x+19 x^2-2 x^3\right ) \log (4-x)+e^{2 x} \left (2 x+2 x^2\right ) \log ^2(4-x)}{-2 x^2+e^{2 x} \left (12 x^3-2 x^4\right )+\left (-4 x+e^{2 x} \left (12 x^2-x^3\right )\right ) \log (4-x)+\left (-2+e^{2 x} x^2\right ) \log ^2(4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} x \left (x \left (-15-20 x+4 x^2\right )+\left (-24-19 x+2 x^2\right ) \log (4-x)-2 (1+x) \log ^2(4-x)\right )}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx\\ &=\int \left (-\frac {15 e^{2 x} x^2}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}-\frac {20 e^{2 x} x^3}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}+\frac {4 e^{2 x} x^4}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}-\frac {24 e^{2 x} x \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}-\frac {19 e^{2 x} x^2 \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}+\frac {2 e^{2 x} x^3 \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}-\frac {2 e^{2 x} x \log ^2(4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}-\frac {2 e^{2 x} x^2 \log ^2(4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )}\right ) \, dx\\ &=2 \int \frac {e^{2 x} x^3 \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-2 \int \frac {e^{2 x} x \log ^2(4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-2 \int \frac {e^{2 x} x^2 \log ^2(4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx+4 \int \frac {e^{2 x} x^4}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-15 \int \frac {e^{2 x} x^2}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-19 \int \frac {e^{2 x} x^2 \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-20 \int \frac {e^{2 x} x^3}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx-24 \int \frac {e^{2 x} x \log (4-x)}{(x+\log (4-x)) \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right )} \, dx\\ &=2 \int \frac {e^{2 x} x^3 \log (4-x)}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-2 \int \frac {e^{2 x} x \log ^2(4-x)}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-2 \int \frac {e^{2 x} x^2 \log ^2(4-x)}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx+4 \int \frac {e^{2 x} x^4}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-15 \int \frac {e^{2 x} x^2}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-19 \int \frac {e^{2 x} x^2 \log (4-x)}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-20 \int \frac {e^{2 x} x^3}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx-24 \int \frac {e^{2 x} x \log (4-x)}{(x+\log (4-x)) \left (2 x \left (1+e^{2 x} (-6+x) x\right )+\left (2-e^{2 x} x^2\right ) \log (4-x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 61, normalized size = 1.85 \begin {gather*} -\log (x+\log (4-x))+\log \left (2 x-12 e^{2 x} x^2+2 e^{2 x} x^3+2 \log (4-x)-e^{2 x} x^2 \log (4-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 83, normalized size = 2.52 \begin {gather*} -\log \left (x + \log \left (-x + 4\right )\right ) + 2 \, \log \relax (x) + \log \left (-\frac {2 \, {\left (x^{3} - 6 \, x^{2}\right )} e^{\left (2 \, x\right )} - {\left (x^{2} e^{\left (2 \, x\right )} - 2\right )} \log \left (-x + 4\right ) + 2 \, x}{x^{2} e^{\left (2 \, x\right )} - 2}\right ) + \log \left (\frac {x^{2} e^{\left (2 \, x\right )} - 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 57, normalized size = 1.73 \begin {gather*} \log \left (-2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} e^{\left (2 \, x\right )} \log \left (-x + 4\right ) + 12 \, x^{2} e^{\left (2 \, x\right )} - 2 \, x - 2 \, \log \left (-x + 4\right )\right ) - \log \left (x + \log \left (-x + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 68, normalized size = 2.06
method | result | size |
risch | \(2 \ln \relax (x )+\ln \left ({\mathrm e}^{2 x}-\frac {2}{x^{2}}\right )+\ln \left (\ln \left (-x +4\right )-\frac {2 x \left ({\mathrm e}^{2 x} x^{2}-6 x \,{\mathrm e}^{2 x}+1\right )}{{\mathrm e}^{2 x} x^{2}-2}\right )-\ln \left (x +\ln \left (-x +4\right )\right )\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 83, normalized size = 2.52 \begin {gather*} -\log \left (x + \log \left (-x + 4\right )\right ) + 2 \, \log \relax (x) + \log \left (-\frac {2 \, {\left (x^{3} - 6 \, x^{2}\right )} e^{\left (2 \, x\right )} - {\left (x^{2} e^{\left (2 \, x\right )} - 2\right )} \log \left (-x + 4\right ) + 2 \, x}{x^{2} e^{\left (2 \, x\right )} - 2}\right ) + \log \left (\frac {x^{2} e^{\left (2 \, x\right )} - 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,x}\,\left (2\,x^2+2\,x\right )\,{\ln \left (4-x\right )}^2+{\mathrm {e}}^{2\,x}\,\left (-2\,x^3+19\,x^2+24\,x\right )\,\ln \left (4-x\right )+{\mathrm {e}}^{2\,x}\,\left (-4\,x^4+20\,x^3+15\,x^2\right )}{{\ln \left (4-x\right )}^2\,\left (x^2\,{\mathrm {e}}^{2\,x}-2\right )+{\mathrm {e}}^{2\,x}\,\left (12\,x^3-2\,x^4\right )-\ln \left (4-x\right )\,\left (4\,x-{\mathrm {e}}^{2\,x}\,\left (12\,x^2-x^3\right )\right )-2\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________