Optimal. Leaf size=35 \[ \frac {\left (5+\frac {x-\log \left (\frac {5}{2 x \log ^2(x)}\right )}{\log (3)}\right )^2}{-\frac {4}{x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 5.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x+4 x^3+\left (-80+20 x^2\right ) \log (3)+\left (-8 x-12 x^2+2 x^3+x^4+\left (-40-80 x+10 x^2\right ) \log (3)+\left (-100-25 x^2\right ) \log ^2(3)\right ) \log (x)+\left (16-4 x^2+\left (8+16 x-2 x^2+\left (40+10 x^2\right ) \log (3)\right ) \log (x)\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )+\left (-4-x^2\right ) \log (x) \log ^2\left (\frac {5}{2 x \log ^2(x)}\right )}{\left (16-8 x^2+x^4\right ) \log ^2(3) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-16 x+4 x^3+\left (-80+20 x^2\right ) \log (3)+\left (-8 x-12 x^2+2 x^3+x^4+\left (-40-80 x+10 x^2\right ) \log (3)+\left (-100-25 x^2\right ) \log ^2(3)\right ) \log (x)+\left (16-4 x^2+\left (8+16 x-2 x^2+\left (40+10 x^2\right ) \log (3)\right ) \log (x)\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )+\left (-4-x^2\right ) \log (x) \log ^2\left (\frac {5}{2 x \log ^2(x)}\right )}{\left (16-8 x^2+x^4\right ) \log (x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \frac {-16 x+4 x^3+\left (-80+20 x^2\right ) \log (3)+\left (-8 x-12 x^2+2 x^3+x^4+\left (-40-80 x+10 x^2\right ) \log (3)+\left (-100-25 x^2\right ) \log ^2(3)\right ) \log (x)+\left (16-4 x^2+\left (8+16 x-2 x^2+\left (40+10 x^2\right ) \log (3)\right ) \log (x)\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )+\left (-4-x^2\right ) \log (x) \log ^2\left (\frac {5}{2 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2 \log (x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \frac {\left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \left (4 \left (-4+x^2\right )+\log (x) \left (-12 x+x^3+x^2 (2-5 \log (3))-4 (2+\log (243))+\left (4+x^2\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )\right )\right )}{\left (4-x^2\right )^2 \log (x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \left (-\frac {12 x \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2}+\frac {x^3 \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2}-\frac {x^2 (-2+\log (243)) \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2}-\frac {4 (2+\log (243)) \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2}+\frac {4 \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{(-2+x) (2+x) \log (x)}+\frac {\left (4+x^2\right ) \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2}\right ) \, dx}{\log ^2(3)}\\ &=\frac {\int \frac {x^3 \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {\int \frac {\left (4+x^2\right ) \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {4 \int \frac {x-\log \left (\frac {5}{486 x \log ^2(x)}\right )}{(-2+x) (2+x) \log (x)} \, dx}{\log ^2(3)}-\frac {12 \int \frac {x \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {(2-\log (243)) \int \frac {x^2 \left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}-\frac {(4 (2+\log (243))) \int \frac {x-\log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}\\ &=\frac {\int \left (\frac {x^4}{\left (-4+x^2\right )^2}-\frac {x^3 \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2}\right ) \, dx}{\log ^2(3)}+\frac {\int \left (\frac {\left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{2 (-2+x)^2}+\frac {\left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{2 (2+x)^2}\right ) \, dx}{\log ^2(3)}+\frac {4 \int \left (\frac {x}{\left (-4+x^2\right ) \log (x)}-\frac {\log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right ) \log (x)}\right ) \, dx}{\log ^2(3)}-\frac {12 \int \left (\frac {x^2}{\left (-4+x^2\right )^2}-\frac {x \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2}\right ) \, dx}{\log ^2(3)}+\frac {(2-\log (243)) \int \left (\frac {x^3}{\left (-4+x^2\right )^2}-\frac {x^2 \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2}\right ) \, dx}{\log ^2(3)}-\frac {(4 (2+\log (243))) \int \left (\frac {x}{\left (-4+x^2\right )^2}-\frac {\log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2}\right ) \, dx}{\log ^2(3)}\\ &=\frac {\int \frac {\left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{(-2+x)^2} \, dx}{2 \log ^2(3)}+\frac {\int \frac {\left (x-\log \left (\frac {5}{486 x \log ^2(x)}\right )\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )}{(2+x)^2} \, dx}{2 \log ^2(3)}+\frac {\int \frac {x^4}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}-\frac {\int \frac {x^3 \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {4 \int \frac {x}{\left (-4+x^2\right ) \log (x)} \, dx}{\log ^2(3)}-\frac {4 \int \frac {\log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right ) \log (x)} \, dx}{\log ^2(3)}-\frac {12 \int \frac {x^2}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {12 \int \frac {x \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {(2-\log (243)) \int \frac {x^3}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}-\frac {(2-\log (243)) \int \frac {x^2 \log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}-\frac {(4 (2+\log (243))) \int \frac {x}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}+\frac {(4 (2+\log (243))) \int \frac {\log \left (\frac {5}{486 x \log ^2(x)}\right )}{\left (-4+x^2\right )^2} \, dx}{\log ^2(3)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.56, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-16 x+4 x^3+\left (-80+20 x^2\right ) \log (3)+\left (-8 x-12 x^2+2 x^3+x^4+\left (-40-80 x+10 x^2\right ) \log (3)+\left (-100-25 x^2\right ) \log ^2(3)\right ) \log (x)+\left (16-4 x^2+\left (8+16 x-2 x^2+\left (40+10 x^2\right ) \log (3)\right ) \log (x)\right ) \log \left (\frac {5}{2 x \log ^2(x)}\right )+\left (-4-x^2\right ) \log (x) \log ^2\left (\frac {5}{2 x \log ^2(x)}\right )}{\left (16-8 x^2+x^4\right ) \log ^2(3) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 62, normalized size = 1.77 \begin {gather*} \frac {x^{3} + 25 \, x \log \relax (3)^{2} + x \log \left (\frac {5}{2 \, x \log \relax (x)^{2}}\right )^{2} - 2 \, {\left (x^{2} + 5 \, x \log \relax (3)\right )} \log \left (\frac {5}{2 \, x \log \relax (x)^{2}}\right ) + 40 \, \log \relax (3)}{{\left (x^{2} - 4\right )} \log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.52, size = 150, normalized size = 4.29 \begin {gather*} \frac {2 \, {\left (\frac {x \log \relax (x)}{x^{2} - 4} - \frac {x \log \relax (5) - 5 \, x \log \relax (3) - 4}{x^{2} - 4}\right )} \log \left (2 \, \log \relax (x)^{2}\right ) + \frac {x \log \left (2 \, \log \relax (x)^{2}\right )^{2}}{x^{2} - 4} + \frac {x \log \relax (x)^{2}}{x^{2} - 4} + x - \frac {2 \, {\left (x \log \relax (5) - 5 \, x \log \relax (3) - 4\right )} \log \relax (x)}{x^{2} - 4} + \frac {x \log \relax (5)^{2} - 10 \, x \log \relax (5) \log \relax (3) + 25 \, x \log \relax (3)^{2} + 4 \, x - 8 \, \log \relax (5) + 40 \, \log \relax (3)}{x^{2} - 4} + 2 \, \log \relax (x) + 4 \, \log \left (\log \relax (x)\right )}{\log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.84, size = 2034, normalized size = 58.11
method | result | size |
risch | \(\text {Expression too large to display}\) | \(2034\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 125, normalized size = 3.57 \begin {gather*} \frac {x^{3} + x \log \relax (x)^{2} + 4 \, x \log \left (\log \relax (x)\right )^{2} + {\left (\log \relax (5)^{2} - 10 \, \log \relax (5) \log \relax (3) + 25 \, \log \relax (3)^{2} - 2 \, {\left (\log \relax (5) - 5 \, \log \relax (3)\right )} \log \relax (2) + \log \relax (2)^{2}\right )} x + 2 \, {\left (x^{2} - x {\left (\log \relax (5) - 5 \, \log \relax (3) - \log \relax (2)\right )}\right )} \log \relax (x) + 4 \, {\left (x^{2} - x {\left (\log \relax (5) - 5 \, \log \relax (3) - \log \relax (2)\right )} + x \log \relax (x)\right )} \log \left (\log \relax (x)\right ) - 8 \, \log \relax (5) + 40 \, \log \relax (3) + 8 \, \log \relax (2)}{{\left (x^{2} - 4\right )} \log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.88, size = 124, normalized size = 3.54 \begin {gather*} \frac {2\,\ln \relax (x)}{{\ln \relax (3)}^2}+\frac {4\,\ln \left (\ln \relax (x)\right )}{{\ln \relax (3)}^2}+\frac {x}{{\ln \relax (3)}^2}+\frac {40\,\ln \relax (3)+x\,\left (25\,{\ln \relax (3)}^2+4\right )}{x^2\,{\ln \relax (3)}^2-4\,{\ln \relax (3)}^2}+\frac {x\,{\ln \left (\frac {5}{2\,x\,{\ln \relax (x)}^2}\right )}^2}{x^2\,{\ln \relax (3)}^2-4\,{\ln \relax (3)}^2}-\frac {\ln \left (\frac {5}{2\,x\,{\ln \relax (x)}^2}\right )\,\left (10\,x\,\ln \relax (3)+8\right )}{x^2\,{\ln \relax (3)}^2-4\,{\ln \relax (3)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.75, size = 126, normalized size = 3.60 \begin {gather*} \frac {x}{\log {\relax (3 )}^{2}} + \frac {x \log {\left (\frac {5}{2 x \log {\relax (x )}^{2}} \right )}^{2}}{x^{2} \log {\relax (3 )}^{2} - 4 \log {\relax (3 )}^{2}} + \frac {x \left (4 + 25 \log {\relax (3 )}^{2}\right ) + 40 \log {\relax (3 )}}{x^{2} \log {\relax (3 )}^{2} - 4 \log {\relax (3 )}^{2}} + \frac {\left (- 10 x \log {\relax (3 )} - 8\right ) \log {\left (\frac {5}{2 x \log {\relax (x )}^{2}} \right )}}{x^{2} \log {\relax (3 )}^{2} - 4 \log {\relax (3 )}^{2}} + \frac {2 \log {\relax (x )}}{\log {\relax (3 )}^{2}} + \frac {4 \log {\left (\log {\relax (x )} \right )}}{\log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________