Optimal. Leaf size=27 \[ \frac {1}{5} \left (-5-e^3+x+6 \left (-4+e^5-e^x\right ) x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 11, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6, 12, 1593, 2196, 2176, 2194} \begin {gather*} -\frac {6}{5} e^x x^2-\frac {6}{5} \left (4-e^5\right ) x^2+\frac {x}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{5} \left (1+\left (-48+12 e^5\right ) x+e^x \left (-12 x-6 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (1+\left (-48+12 e^5\right ) x+e^x \left (-12 x-6 x^2\right )\right ) \, dx\\ &=\frac {x}{5}-\frac {6}{5} \left (4-e^5\right ) x^2+\frac {1}{5} \int e^x \left (-12 x-6 x^2\right ) \, dx\\ &=\frac {x}{5}-\frac {6}{5} \left (4-e^5\right ) x^2+\frac {1}{5} \int e^x (-12-6 x) x \, dx\\ &=\frac {x}{5}-\frac {6}{5} \left (4-e^5\right ) x^2+\frac {1}{5} \int \left (-12 e^x x-6 e^x x^2\right ) \, dx\\ &=\frac {x}{5}-\frac {6}{5} \left (4-e^5\right ) x^2-\frac {6}{5} \int e^x x^2 \, dx-\frac {12}{5} \int e^x x \, dx\\ &=\frac {x}{5}-\frac {12 e^x x}{5}-\frac {6 e^x x^2}{5}-\frac {6}{5} \left (4-e^5\right ) x^2+\frac {12 \int e^x \, dx}{5}+\frac {12}{5} \int e^x x \, dx\\ &=\frac {12 e^x}{5}+\frac {x}{5}-\frac {6 e^x x^2}{5}-\frac {6}{5} \left (4-e^5\right ) x^2-\frac {12 \int e^x \, dx}{5}\\ &=\frac {x}{5}-\frac {6 e^x x^2}{5}-\frac {6}{5} \left (4-e^5\right ) x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.78 \begin {gather*} \frac {1}{5} \left (x-6 \left (4-e^5+e^x\right ) x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 23, normalized size = 0.85 \begin {gather*} \frac {6}{5} \, x^{2} e^{5} - \frac {6}{5} \, x^{2} e^{x} - \frac {24}{5} \, x^{2} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 23, normalized size = 0.85 \begin {gather*} \frac {6}{5} \, x^{2} e^{5} - \frac {6}{5} \, x^{2} e^{x} - \frac {24}{5} \, x^{2} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.81
method | result | size |
norman | \(\left (\frac {6 \,{\mathrm e}^{5}}{5}-\frac {24}{5}\right ) x^{2}+\frac {x}{5}-\frac {6 \,{\mathrm e}^{x} x^{2}}{5}\) | \(22\) |
default | \(\frac {x}{5}-\frac {24 x^{2}}{5}+\frac {6 x^{2} {\mathrm e}^{5}}{5}-\frac {6 \,{\mathrm e}^{x} x^{2}}{5}\) | \(24\) |
risch | \(\frac {x}{5}-\frac {24 x^{2}}{5}+\frac {6 x^{2} {\mathrm e}^{5}}{5}-\frac {6 \,{\mathrm e}^{x} x^{2}}{5}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.85 \begin {gather*} \frac {6}{5} \, x^{2} e^{5} - \frac {6}{5} \, x^{2} e^{x} - \frac {24}{5} \, x^{2} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 21, normalized size = 0.78 \begin {gather*} \frac {x}{5}-\frac {6\,x^2\,{\mathrm {e}}^x}{5}+x^2\,\left (\frac {6\,{\mathrm {e}}^5}{5}-\frac {24}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 26, normalized size = 0.96 \begin {gather*} - \frac {6 x^{2} e^{x}}{5} + x^{2} \left (- \frac {24}{5} + \frac {6 e^{5}}{5}\right ) + \frac {x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________