Optimal. Leaf size=21 \[ \frac {e^{2 x} x}{\frac {8}{e^5+x}+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (-e^{10}+16 x+15 x^2+e^5 (8+14 x)\right )+e^{2 x} \left (x^2+2 x^3+e^{10} (1+2 x)+e^5 \left (2 x+4 x^2\right )\right ) \log (x)}{64+\left (16 e^5+16 x\right ) \log (x)+\left (e^{10}+2 e^5 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-e^{10}+2 e^5 (4+7 x)+x (16+15 x)+\left (e^5+x\right )^2 (1+2 x) \log (x)\right )}{\left (8+\left (e^5+x\right ) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {e^{2 x} \left (-e^{10}+2 \left (4-e^5\right ) x-x^2\right )}{\left (8+e^5 \log (x)+x \log (x)\right )^2}+\frac {e^{2 x} \left (e^5+\left (1+2 e^5\right ) x+2 x^2\right )}{8+e^5 \log (x)+x \log (x)}\right ) \, dx\\ &=\int \frac {e^{2 x} \left (-e^{10}+2 \left (4-e^5\right ) x-x^2\right )}{\left (8+e^5 \log (x)+x \log (x)\right )^2} \, dx+\int \frac {e^{2 x} \left (e^5+\left (1+2 e^5\right ) x+2 x^2\right )}{8+e^5 \log (x)+x \log (x)} \, dx\\ &=\int \left (-\frac {e^{10+2 x}}{\left (8+e^5 \log (x)+x \log (x)\right )^2}-\frac {2 e^{2 x} \left (-4+e^5\right ) x}{\left (8+e^5 \log (x)+x \log (x)\right )^2}-\frac {e^{2 x} x^2}{\left (8+e^5 \log (x)+x \log (x)\right )^2}\right ) \, dx+\int \left (\frac {e^{5+2 x}}{8+e^5 \log (x)+x \log (x)}+\frac {e^{2 x} \left (1+2 e^5\right ) x}{8+e^5 \log (x)+x \log (x)}+\frac {2 e^{2 x} x^2}{8+e^5 \log (x)+x \log (x)}\right ) \, dx\\ &=2 \int \frac {e^{2 x} x^2}{8+e^5 \log (x)+x \log (x)} \, dx+\left (2 \left (4-e^5\right )\right ) \int \frac {e^{2 x} x}{\left (8+e^5 \log (x)+x \log (x)\right )^2} \, dx+\left (1+2 e^5\right ) \int \frac {e^{2 x} x}{8+e^5 \log (x)+x \log (x)} \, dx-\int \frac {e^{10+2 x}}{\left (8+e^5 \log (x)+x \log (x)\right )^2} \, dx-\int \frac {e^{2 x} x^2}{\left (8+e^5 \log (x)+x \log (x)\right )^2} \, dx+\int \frac {e^{5+2 x}}{8+e^5 \log (x)+x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 26, normalized size = 1.24 \begin {gather*} \frac {e^{2 x} x \left (e^5+x\right )}{8+e^5 \log (x)+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.44, size = 24, normalized size = 1.14 \begin {gather*} \frac {{\left (x^{2} + x e^{5}\right )} e^{\left (2 \, x\right )}}{{\left (x + e^{5}\right )} \log \relax (x) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 31, normalized size = 1.48 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} + x e^{\left (2 \, x + 5\right )}}{x \log \relax (x) + e^{5} \log \relax (x) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.14
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{2 x} \left ({\mathrm e}^{5}+x \right )}{{\mathrm e}^{5} \ln \relax (x )+x \ln \relax (x )+8}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 24, normalized size = 1.14 \begin {gather*} \frac {{\left (x^{2} + x e^{5}\right )} e^{\left (2 \, x\right )}}{{\left (x + e^{5}\right )} \log \relax (x) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 23, normalized size = 1.10 \begin {gather*} \frac {x\,{\mathrm {e}}^{2\,x}\,\left (x+{\mathrm {e}}^5\right )}{{\mathrm {e}}^5\,\ln \relax (x)+x\,\ln \relax (x)+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 26, normalized size = 1.24 \begin {gather*} \frac {\left (x^{2} + x e^{5}\right ) e^{2 x}}{x \log {\relax (x )} + e^{5} \log {\relax (x )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________