Optimal. Leaf size=29 \[ \log (2)+\log \left (x+5 \left (3+x+\frac {e^{\frac {(5+x)^2}{x}}}{-5+\log (2)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 32, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 3, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6, 6688, 6684} \begin {gather*} \log \left (5 e^{\frac {(x+5)^2}{x}}-(x (30-\log (64)))-15 (5-\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {25+10 x+x^2}{x}} \left (-125+5 x^2\right )+x^2 (-30+6 \log (2))}{-75 x^2+5 e^{\frac {25+10 x+x^2}{x}} x^2-30 x^3+\left (15 x^2+6 x^3\right ) \log (2)} \, dx\\ &=\int \frac {5 e^{\frac {(5+x)^2}{x}} \left (-25+x^2\right )+x^2 (-30+\log (64))}{x^2 \left (5 e^{\frac {(5+x)^2}{x}}+15 (-5+\log (2))+x (-30+\log (64))\right )} \, dx\\ &=\log \left (5 e^{\frac {(5+x)^2}{x}}-15 (5-\log (2))-x (30-\log (64))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 27, normalized size = 0.93 \begin {gather*} \log \left (75-5 e^{10+\frac {25}{x}+x}+30 x-15 \log (2)-x \log (64)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 30, normalized size = 1.03 \begin {gather*} \log \left (3 \, {\left (2 \, x + 5\right )} \log \relax (2) - 30 \, x + 5 \, e^{\left (\frac {x^{2} + 10 \, x + 25}{x}\right )} - 75\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 30, normalized size = 1.03 \begin {gather*} \log \left (6 \, x \log \relax (2) - 30 \, x + 5 \, e^{\left (\frac {x^{2} + 10 \, x + 25}{x}\right )} + 15 \, \log \relax (2) - 75\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 31, normalized size = 1.07
method | result | size |
norman | \(\ln \left (6 x \ln \relax (2)+5 \,{\mathrm e}^{\frac {x^{2}+10 x +25}{x}}+15 \ln \relax (2)-30 x -75\right )\) | \(31\) |
risch | \(x +\frac {25}{x}-\frac {x^{2}+10 x +25}{x}+\ln \left (\frac {6 x \ln \relax (2)}{5}+3 \ln \relax (2)-6 x +{\mathrm e}^{\frac {\left (5+x \right )^{2}}{x}}-15\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 35, normalized size = 1.21 \begin {gather*} x + \log \left (\frac {1}{5} \, {\left (6 \, x {\left (\log \relax (2) - 5\right )} + 5 \, e^{\left (x + \frac {25}{x} + 10\right )} + 15 \, \log \relax (2) - 75\right )} e^{\left (-x - 10\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {x^2+10\,x+25}{x}}\,\left (5\,x^2-125\right )+6\,x^2\,\ln \relax (2)-30\,x^2}{\ln \relax (2)\,\left (6\,x^3+15\,x^2\right )-75\,x^2-30\,x^3+5\,x^2\,{\mathrm {e}}^{\frac {x^2+10\,x+25}{x}}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 31, normalized size = 1.07 \begin {gather*} \log {\left (- 6 x + \frac {6 x \log {\relax (2 )}}{5} + e^{\frac {x^{2} + 10 x + 25}{x}} - 15 + 3 \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________