Optimal. Leaf size=33 \[ x-\frac {1}{9} \left (\frac {2}{x^2}-\log \left (e^{e^8+e^x} (x-\log (x))\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x+4 x^2-4 x^3-4 e^x x^4-9 x^6+\left (16+4 e^x x^3+9 x^5\right ) \log (x)+\left (8 x^3-2 x^4+2 x^5+2 e^x x^6+\left (-8 x^2-2 e^x x^5\right ) \log (x)\right ) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{-9 x^6+9 x^5 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x+4 x^2-4 x^3-4 e^x x^4-9 x^6+\left (16+4 e^x x^3+9 x^5\right ) \log (x)+\left (8 x^3-2 x^4+2 x^5+2 e^x x^6+\left (-8 x^2-2 e^x x^5\right ) \log (x)\right ) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^5 (-9 x+9 \log (x))} \, dx\\ &=\int \frac {16 x-4 x^2+4 x^3+4 e^x x^4+9 x^6-\left (16+4 e^x x^3+9 x^5\right ) \log (x)-\left (8 x^3-2 x^4+2 x^5+2 e^x x^6+\left (-8 x^2-2 e^x x^5\right ) \log (x)\right ) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{9 x^5 (x-\log (x))} \, dx\\ &=\frac {1}{9} \int \frac {16 x-4 x^2+4 x^3+4 e^x x^4+9 x^6-\left (16+4 e^x x^3+9 x^5\right ) \log (x)-\left (8 x^3-2 x^4+2 x^5+2 e^x x^6+\left (-8 x^2-2 e^x x^5\right ) \log (x)\right ) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^5 (x-\log (x))} \, dx\\ &=\frac {1}{9} \int \left (\frac {16}{x^4 (x-\log (x))}-\frac {4}{x^3 (x-\log (x))}+\frac {4}{x^2 (x-\log (x))}+\frac {9 x}{x-\log (x)}-\frac {9 \log (x)}{x-\log (x)}-\frac {16 \log (x)}{x^5 (x-\log (x))}-\frac {2 \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)}-\frac {8 \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))}+\frac {2 \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))}+\frac {8 \log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))}-\frac {2 e^x \left (-2+x^2 \log \left (e^{e^8+e^x} (x-\log (x))\right )\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx\right )+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {2}{9} \int \frac {e^x \left (-2+x^2 \log \left (e^{e^8+e^x} (x-\log (x))\right )\right )}{x^2} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx+\frac {16}{9} \int \frac {1}{x^4 (x-\log (x))} \, dx-\frac {16}{9} \int \frac {\log (x)}{x^5 (x-\log (x))} \, dx+\int \frac {x}{x-\log (x)} \, dx-\int \frac {\log (x)}{x-\log (x)} \, dx\\ &=-\left (\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx\right )+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {2}{9} \int \left (-\frac {2 e^x}{x^2}+e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )\right ) \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx-\frac {16}{9} \int \left (-\frac {1}{x^5}+\frac {1}{x^4 (x-\log (x))}\right ) \, dx+\frac {16}{9} \int \frac {1}{x^4 (x-\log (x))} \, dx-\int \left (-1+\frac {x}{x-\log (x)}\right ) \, dx+\int \frac {x}{x-\log (x)} \, dx\\ &=-\frac {4}{9 x^4}+x-\frac {2}{9} \int e^x \log \left (e^{e^8+e^x} (x-\log (x))\right ) \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx+\frac {4}{9} \int \frac {e^x}{x^2} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ &=-\frac {4}{9 x^4}-\frac {4 e^x}{9 x}+x-\frac {2}{9} e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )+\frac {2}{9} \int \frac {e^x \left (-1+x+e^x x^2-e^x x \log (x)\right )}{x (x-\log (x))} \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx+\frac {4}{9} \int \frac {e^x}{x} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ &=-\frac {4}{9 x^4}-\frac {4 e^x}{9 x}+x+\frac {4 \text {Ei}(x)}{9}-\frac {2}{9} e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )+\frac {2}{9} \int \left (e^{2 x}+\frac {e^x (-1+x)}{x (x-\log (x))}\right ) \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ &=-\frac {4}{9 x^4}-\frac {4 e^x}{9 x}+x+\frac {4 \text {Ei}(x)}{9}-\frac {2}{9} e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )+\frac {2}{9} \int e^{2 x} \, dx+\frac {2}{9} \int \frac {e^x (-1+x)}{x (x-\log (x))} \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ &=\frac {e^{2 x}}{9}-\frac {4}{9 x^4}-\frac {4 e^x}{9 x}+x+\frac {4 \text {Ei}(x)}{9}-\frac {2}{9} e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )+\frac {2}{9} \int \left (\frac {e^x}{x-\log (x)}-\frac {e^x}{x (x-\log (x))}\right ) \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ &=\frac {e^{2 x}}{9}-\frac {4}{9 x^4}-\frac {4 e^x}{9 x}+x+\frac {4 \text {Ei}(x)}{9}-\frac {2}{9} e^x \log \left (e^{e^8+e^x} (x-\log (x))\right )+\frac {2}{9} \int \frac {e^x}{x-\log (x)} \, dx-\frac {2}{9} \int \frac {e^x}{x (x-\log (x))} \, dx-\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x-\log (x)} \, dx+\frac {2}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x (x-\log (x))} \, dx-\frac {4}{9} \int \frac {1}{x^3 (x-\log (x))} \, dx+\frac {4}{9} \int \frac {1}{x^2 (x-\log (x))} \, dx-\frac {8}{9} \int \frac {\log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^2 (x-\log (x))} \, dx+\frac {8}{9} \int \frac {\log (x) \log \left (e^{e^8+e^x} (x-\log (x))\right )}{x^3 (x-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.26, size = 88, normalized size = 2.67 \begin {gather*} \frac {1}{9} \left (e^{2 x}-\frac {4}{x^4}+9 x+\log ^2(x-\log (x))+2 \log (x-\log (x)) \left (e^x-\log \left (e^{e^8+e^x} (x-\log (x))\right )\right )+\left (-2 e^x+\frac {4}{x^2}\right ) \log \left (e^{e^8+e^x} (x-\log (x))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 51, normalized size = 1.55 \begin {gather*} -\frac {x^{4} \log \left ({\left (x - \log \relax (x)\right )} e^{\left (e^{8} + e^{x}\right )}\right )^{2} - 9 \, x^{5} - 4 \, x^{2} \log \left ({\left (x - \log \relax (x)\right )} e^{\left (e^{8} + e^{x}\right )}\right ) + 4}{9 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 96, normalized size = 2.91 \begin {gather*} -\frac {2 \, x^{4} e^{x} \log \left (x - \log \relax (x)\right ) + x^{4} \log \left (x - \log \relax (x)\right )^{2} + 2 \, x^{4} e^{8} \log \left (-x + \log \relax (x)\right ) - 9 \, x^{5} + x^{4} e^{\left (2 \, x\right )} + 2 \, x^{4} e^{\left (x + 8\right )} - 4 \, x^{2} e^{8} - 4 \, x^{2} e^{x} - 4 \, x^{2} \log \left (x - \log \relax (x)\right ) + 4}{9 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 529, normalized size = 16.03
method | result | size |
risch | \(-\frac {2 \left (\ln \left (x -\ln \relax (x )\right ) x^{2}+{\mathrm e}^{x} x^{2}-2\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )}{9 x^{2}}+\frac {2 i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2} {\mathrm e}^{x} x^{4}+i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) x^{4}+i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2} x^{4}-i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{3} x^{4}-2 i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )+2 i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{3}-i \pi \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{3} {\mathrm e}^{x} x^{4}-2 i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2} {\mathrm e}^{x} x^{4}+i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) {\mathrm e}^{x} x^{4}-i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (i {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right ) {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{8}}\right )^{2} x^{4}+{\mathrm e}^{2 x} x^{4}-\ln \left (x -\ln \relax (x )\right )^{2} x^{4}+9 x^{5}+4 \ln \left (x -\ln \relax (x )\right ) x^{2}-4}{9 x^{4}}\) | \(529\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 83, normalized size = 2.52 \begin {gather*} -\frac {x^{4} \log \left (x - \log \relax (x)\right )^{2} - 9 \, x^{5} + x^{4} e^{\left (2 \, x\right )} - 4 \, x^{2} e^{8} + 2 \, {\left (x^{4} e^{8} - 2 \, x^{2}\right )} e^{x} + 2 \, {\left (x^{4} e^{8} + x^{4} e^{x} - 2 \, x^{2}\right )} \log \left (x - \log \relax (x)\right ) + 4}{9 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 44, normalized size = 1.33 \begin {gather*} x+\frac {4\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{{\mathrm {e}}^8}\,\left (x-\ln \relax (x)\right )\right )}{9\,x^2}-\frac {{\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{{\mathrm {e}}^8}\,\left (x-\ln \relax (x)\right )\right )}^2}{9}-\frac {4}{9\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________