Optimal. Leaf size=25 \[ e^{\frac {2 (2+75 x (x+6 (1+x)) \log (4))}{x}} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 69, normalized size of antiderivative = 2.76, number of steps used = 1, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2288} \begin {gather*} -\frac {4^{\frac {2 \left (525 x^2+450 x\right )}{x}} e^{4/x} \left (2-525 x^2 \log (4)\right )}{\frac {150 (7 x+3) \log (4)}{x}-\frac {75 \left (7 x^2+6 x\right ) \log (4)+2}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {4^{\frac {2 \left (450 x+525 x^2\right )}{x}} e^{4/x} \left (2-525 x^2 \log (4)\right )}{\frac {150 (3+7 x) \log (4)}{x}-\frac {2+75 \left (6 x+7 x^2\right ) \log (4)}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.72 \begin {gather*} 2^{1800+2100 x} e^{4/x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.00 \begin {gather*} x^{2} e^{\left (\frac {4 \, {\left (75 \, {\left (7 \, x^{2} + 6 \, x\right )} \log \relax (2) + 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (\frac {4 \, {\left (525 \, x^{2} \log \relax (2) + 450 \, x \log \relax (2) + 1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 25, normalized size = 1.00
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {2100 x^{2} \ln \relax (2)+1800 x \ln \relax (2)+4}{x}}\) | \(25\) |
gosper | \(x^{2} {\mathrm e}^{\frac {2100 x^{2} \ln \relax (2)+1800 x \ln \relax (2)+4}{x}}\) | \(27\) |
norman | \(x^{2} {\mathrm e}^{\frac {4 \left (525 x^{2}+450 x \right ) \ln \relax (2)+4}{x}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 17, normalized size = 0.68 \begin {gather*} 71448348576730208360402604523024658663907311448489024669693316988935593287322878666163481950176220037593478347105937422686501991894419788796088422137966026262523598150372719976137911322484446114613284904383977643176193557817897027023063420124852033989626806764509137929914787205373413116077254242653423277386226627159120168223623660139965116969572411841665962582988716865792650075294655252525257343163566042824495509307872827973214736884381496689456792434150079470111661811761376161068055664012337698456291039551943299284254570579952324837376 \, x^{2} e^{\left (2100 \, x \log \relax (2) + \frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.11, size = 17, normalized size = 0.68 \begin {gather*} 2^{2100\,x+1800}\,x^2\,{\mathrm {e}}^{4/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.80 \begin {gather*} x^{2} e^{\frac {2 \left (\left (1050 x^{2} + 900 x\right ) \log {\relax (2 )} + 2\right )}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________