Optimal. Leaf size=25 \[ x-e^{8-2 x} x+\frac {x (x+\log (7))}{x+x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 42, normalized size of antiderivative = 1.68, number of steps used = 8, number of rules used = 6, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {27, 6741, 6742, 2176, 2194, 683} \begin {gather*} \frac {1}{2} e^{8-2 x} (1-2 x)-\frac {1}{2} e^{8-2 x}+x-\frac {1-\log (7)}{x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2176
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+2 x+x^2+e^{8-2 x} \left (-1+3 x^2+2 x^3\right )-\log (7)}{(1+x)^2} \, dx\\ &=\int \frac {2 x+x^2+e^{8-2 x} \left (-1+3 x^2+2 x^3\right )+2 \left (1-\frac {\log (7)}{2}\right )}{(1+x)^2} \, dx\\ &=\int \left (e^{8-2 x} (-1+2 x)+\frac {2+2 x+x^2-\log (7)}{(1+x)^2}\right ) \, dx\\ &=\int e^{8-2 x} (-1+2 x) \, dx+\int \frac {2+2 x+x^2-\log (7)}{(1+x)^2} \, dx\\ &=\frac {1}{2} e^{8-2 x} (1-2 x)+\int e^{8-2 x} \, dx+\int \left (1+\frac {1-\log (7)}{(1+x)^2}\right ) \, dx\\ &=-\frac {1}{2} e^{8-2 x}+\frac {1}{2} e^{8-2 x} (1-2 x)+x-\frac {1-\log (7)}{1+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 22, normalized size = 0.88 \begin {gather*} x-e^{8-2 x} x+\frac {-1+\log (7)}{1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 27, normalized size = 1.08 \begin {gather*} \frac {x^{2} - {\left (x^{2} + x\right )} e^{\left (-2 \, x + 8\right )} + x + \log \relax (7) - 1}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 39, normalized size = 1.56 \begin {gather*} -\frac {x^{2} e^{\left (-2 \, x + 8\right )} - x^{2} + x e^{\left (-2 \, x + 8\right )} - x - \log \relax (7) + 1}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 27, normalized size = 1.08
method | result | size |
risch | \(x +\frac {\ln \relax (7)}{x +1}-\frac {1}{x +1}-x \,{\mathrm e}^{-2 x +8}\) | \(27\) |
norman | \(\frac {x^{2}-x \,{\mathrm e}^{-2 x +8}-x^{2} {\mathrm e}^{-2 x +8}-2+\ln \relax (7)}{x +1}\) | \(38\) |
derivativedivides | \(x -4+\frac {1}{-x -1}-\frac {\ln \relax (7)}{-x -1}-4 \,{\mathrm e}^{-2 x +8}+{\mathrm e}^{-2 x +8} \left (-x +4\right )\) | \(46\) |
default | \(x -4+\frac {1}{-x -1}-\frac {\ln \relax (7)}{-x -1}-4 \,{\mathrm e}^{-2 x +8}+{\mathrm e}^{-2 x +8} \left (-x +4\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x e^{\left (-2 \, x + 8\right )} + x + \frac {e^{10} E_{2}\left (2 \, x + 2\right )}{x + 1} + \frac {\log \relax (7)}{x + 1} - \frac {1}{x + 1} + \int \frac {e^{\left (-2 \, x + 8\right )}}{x^{2} + 2 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 22, normalized size = 0.88 \begin {gather*} \frac {\ln \relax (7)-1}{x+1}-x\,\left ({\mathrm {e}}^{8-2\,x}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.68 \begin {gather*} - x e^{8 - 2 x} + x + \frac {-1 + \log {\relax (7 )}}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________