Optimal. Leaf size=17 \[ \frac {e^8 \log ^4(4)}{(5+5 x+\log (x))^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 134, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {12, 6688, 6686} \begin {gather*} \frac {e^8 \log ^4(4)}{(5 x+\log (x)+5)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (e^8 \log ^4(4)\right ) \int \frac {-4-20 x}{3125 x+15625 x^2+31250 x^3+31250 x^4+15625 x^5+3125 x^6+\left (3125 x+12500 x^2+18750 x^3+12500 x^4+3125 x^5\right ) \log (x)+\left (1250 x+3750 x^2+3750 x^3+1250 x^4\right ) \log ^2(x)+\left (250 x+500 x^2+250 x^3\right ) \log ^3(x)+\left (25 x+25 x^2\right ) \log ^4(x)+x \log ^5(x)} \, dx\\ &=\left (e^8 \log ^4(4)\right ) \int \frac {4 (-1-5 x)}{x (5+5 x+\log (x))^5} \, dx\\ &=\left (4 e^8 \log ^4(4)\right ) \int \frac {-1-5 x}{x (5+5 x+\log (x))^5} \, dx\\ &=\frac {e^8 \log ^4(4)}{(5+5 x+\log (x))^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 1.00 \begin {gather*} \frac {e^8 \log ^4(4)}{(5+5 x+\log (x))^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 74, normalized size = 4.35 \begin {gather*} \frac {16 \, e^{8} \log \relax (2)^{4}}{625 \, x^{4} + 20 \, {\left (x + 1\right )} \log \relax (x)^{3} + \log \relax (x)^{4} + 2500 \, x^{3} + 150 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 3750 \, x^{2} + 500 \, {\left (x^{3} + 3 \, x^{2} + 3 \, x + 1\right )} \log \relax (x) + 2500 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 134, normalized size = 7.88 \begin {gather*} \frac {16 \, {\left (5 \, x + 1\right )} e^{8} \log \relax (2)^{4}}{3125 \, x^{5} + 2500 \, x^{4} \log \relax (x) + 750 \, x^{3} \log \relax (x)^{2} + 100 \, x^{2} \log \relax (x)^{3} + 5 \, x \log \relax (x)^{4} + 13125 \, x^{4} + 8000 \, x^{3} \log \relax (x) + 1650 \, x^{2} \log \relax (x)^{2} + 120 \, x \log \relax (x)^{3} + \log \relax (x)^{4} + 21250 \, x^{3} + 9000 \, x^{2} \log \relax (x) + 1050 \, x \log \relax (x)^{2} + 20 \, \log \relax (x)^{3} + 16250 \, x^{2} + 4000 \, x \log \relax (x) + 150 \, \log \relax (x)^{2} + 5625 \, x + 500 \, \log \relax (x) + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 1.06
method | result | size |
risch | \(\frac {16 \ln \relax (2)^{4} {\mathrm e}^{8}}{\left (5+\ln \relax (x )+5 x \right )^{4}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 74, normalized size = 4.35 \begin {gather*} \frac {16 \, e^{8} \log \relax (2)^{4}}{625 \, x^{4} + 20 \, {\left (x + 1\right )} \log \relax (x)^{3} + \log \relax (x)^{4} + 2500 \, x^{3} + 150 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 3750 \, x^{2} + 500 \, {\left (x^{3} + 3 \, x^{2} + 3 \, x + 1\right )} \log \relax (x) + 2500 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.58, size = 17, normalized size = 1.00 \begin {gather*} \frac {16\,{\mathrm {e}}^8\,{\ln \relax (2)}^4}{{\left (5\,x+\ln \relax (x)+5\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.27, size = 78, normalized size = 4.59 \begin {gather*} \frac {16 e^{8} \log {\relax (2 )}^{4}}{625 x^{4} + 2500 x^{3} + 3750 x^{2} + 2500 x + \left (20 x + 20\right ) \log {\relax (x )}^{3} + \left (150 x^{2} + 300 x + 150\right ) \log {\relax (x )}^{2} + \left (500 x^{3} + 1500 x^{2} + 1500 x + 500\right ) \log {\relax (x )} + \log {\relax (x )}^{4} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________