Optimal. Leaf size=17 \[ 4+\frac {2}{e^4}+\frac {x}{\log \left (-x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 10, normalized size of antiderivative = 0.59, number of steps used = 7, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2360, 2297, 2300, 2178} \begin {gather*} \frac {x}{\log \left (-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2297
Rule 2300
Rule 2360
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{\log ^2\left (-x^2\right )}+\frac {1}{\log \left (-x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (-x^2\right )} \, dx\right )+\int \frac {1}{\log \left (-x^2\right )} \, dx\\ &=\frac {x}{\log \left (-x^2\right )}+\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (-x^2\right )\right )}{2 \sqrt {-x^2}}-\int \frac {1}{\log \left (-x^2\right )} \, dx\\ &=\frac {x \text {Ei}\left (\frac {1}{2} \log \left (-x^2\right )\right )}{2 \sqrt {-x^2}}+\frac {x}{\log \left (-x^2\right )}-\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (-x^2\right )\right )}{2 \sqrt {-x^2}}\\ &=\frac {x}{\log \left (-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 10, normalized size = 0.59 \begin {gather*} \frac {x}{\log \left (-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 10, normalized size = 0.59 \begin {gather*} \frac {x}{\log \left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 10, normalized size = 0.59 \begin {gather*} \frac {x}{\log \left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 11, normalized size = 0.65
method | result | size |
norman | \(\frac {x}{\ln \left (-x^{2}\right )}\) | \(11\) |
risch | \(\frac {x}{\ln \left (-x^{2}\right )}\) | \(11\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 12, normalized size = 0.71 \begin {gather*} \frac {x}{i \, \pi + 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 10, normalized size = 0.59 \begin {gather*} \frac {x}{\ln \left (-x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 7, normalized size = 0.41 \begin {gather*} \frac {x}{\log {\left (- x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________