Optimal. Leaf size=31 \[ e^{25+e^2-x+e^{2 e^4} \left (-e^{e^3}+2 x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 47, normalized size of antiderivative = 1.52, number of steps used = 2, number of rules used = 2, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {2244, 2236} \begin {gather*} \exp \left (4 e^{2 e^4} x^2-\left (1+4 e^{e^3+2 e^4}\right ) x+e^{2 e^3 (1+e)}+e^2+25\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 2244
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (25+e^2+e^{2 e^3 (1+e)}+\left (-1-4 e^{e^3+2 e^4}\right ) x+4 e^{2 e^4} x^2\right ) \left (-1-4 e^{e^3+2 e^4}+8 e^{2 e^4} x\right ) \, dx\\ &=\exp \left (25+e^2+e^{2 e^3 (1+e)}-\left (1+4 e^{e^3+2 e^4}\right ) x+4 e^{2 e^4} x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 47, normalized size = 1.52 \begin {gather*} e^{25+e^2+e^{2 e^3 (1+e)}-\left (1+4 e^{e^3+2 e^4}\right ) x+4 e^{2 e^4} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 68, normalized size = 2.19 \begin {gather*} e^{\left ({\left (4 \, x^{2} e^{\left (4 \, e^{4} + 2 \, e^{3}\right )} - {\left (4 \, x e^{\left (2 \, e^{4} + e^{3}\right )} + x - e^{2} - 25\right )} e^{\left (2 \, e^{4} + 2 \, e^{3}\right )} + e^{\left (4 \, e^{4} + 4 \, e^{3}\right )}\right )} e^{\left (-2 \, e^{4} - 2 \, e^{3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 39, normalized size = 1.26 \begin {gather*} e^{\left (4 \, x^{2} e^{\left (2 \, e^{4}\right )} - 4 \, x e^{\left (2 \, e^{4} + e^{3}\right )} - x + e^{2} + e^{\left (2 \, e^{4} + 2 \, e^{3}\right )} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 40, normalized size = 1.29
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{4}+2 \,{\mathrm e}^{3}}-4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}+{\mathrm e}^{3}}+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2}-x +25}\) | \(40\) |
gosper | \({\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{2 \,{\mathrm e}^{3}}-4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{{\mathrm e}^{3}}+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2}-x +25}\) | \(47\) |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{2 \,{\mathrm e}^{3}}-4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{{\mathrm e}^{3}}+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2}-x +25}\) | \(47\) |
default | \({\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{2 \,{\mathrm e}^{3}}-4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{{\mathrm e}^{3}}+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2}-x +25}\) | \(47\) |
norman | \({\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{2 \,{\mathrm e}^{3}}-4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{{\mathrm e}^{3}}+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2}-x +25}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 39, normalized size = 1.26 \begin {gather*} e^{\left (4 \, x^{2} e^{\left (2 \, e^{4}\right )} - 4 \, x e^{\left (2 \, e^{4} + e^{3}\right )} - x + e^{2} + e^{\left (2 \, e^{4} + 2 \, e^{3}\right )} + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 45, normalized size = 1.45 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{2\,{\mathrm {e}}^3}\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}}\,{\mathrm {e}}^{-4\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}\,{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{25}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}}\,{\mathrm {e}}^{{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 48, normalized size = 1.55 \begin {gather*} e^{4 x^{2} e^{2 e^{4}} - 4 x e^{e^{3}} e^{2 e^{4}} - x + e^{2} + 25 + e^{2 e^{3}} e^{2 e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________