Optimal. Leaf size=21 \[ \left (2+e^x+x\right )^{\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 5.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2+e^x+x\right )^{\frac {1}{2 \log \left (\frac {1}{4} (-12+x)\right )}} \left (\left (-12+e^x (-12+x)+x\right ) \log \left (\frac {1}{4} (-12+x)\right )+\left (-2-e^x-x\right ) \log \left (2+e^x+x\right )\right )}{\left (-48-20 x+2 x^2+e^x (-24+2 x)\right ) \log ^2\left (\frac {1}{4} (-12+x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-\left (\left (-12+e^x (-12+x)+x\right ) \log \left (\frac {1}{4} (-12+x)\right )\right )-\left (-2-e^x-x\right ) \log \left (2+e^x+x\right )\right )}{2 (12-x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx\\ &=\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-\left (\left (-12+e^x (-12+x)+x\right ) \log \left (\frac {1}{4} (-12+x)\right )\right )-\left (-2-e^x-x\right ) \log \left (2+e^x+x\right )\right )}{(12-x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-12 \log \left (-3+\frac {x}{4}\right )+x \log \left (-3+\frac {x}{4}\right )-\log \left (2+e^x+x\right )\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )}+\frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-12 \log \left (-3+\frac {x}{4}\right )+x \log \left (-3+\frac {x}{4}\right )-2 \log \left (2+e^x+x\right )-x \log \left (2+e^x+x\right )\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-12 \log \left (-3+\frac {x}{4}\right )+x \log \left (-3+\frac {x}{4}\right )-\log \left (2+e^x+x\right )\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-12 \log \left (-3+\frac {x}{4}\right )+x \log \left (-3+\frac {x}{4}\right )-2 \log \left (2+e^x+x\right )-x \log \left (2+e^x+x\right )\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx\\ &=\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \left (-\left ((-12+x) \log \left (-3+\frac {x}{4}\right )\right )+(2+x) \log \left (2+e^x+x\right )\right )}{(12-x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \left (\frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )}-\frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \left (\frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )}-\frac {(2+x) \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {(2+x) \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx\\ &=\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \left (\frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{\log ^2\left (-3+\frac {x}{4}\right )}+\frac {14 \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx+\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}}}{\log \left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{\log ^2\left (-3+\frac {x}{4}\right )} \, dx-\frac {1}{2} \int \frac {e^x \left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx-7 \int \frac {\left (2+e^x+x\right )^{-1+\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \log \left (2+e^x+x\right )}{(-12+x) \log ^2\left (-3+\frac {x}{4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.91, size = 21, normalized size = 1.00 \begin {gather*} \left (2+e^x+x\right )^{\frac {1}{2 \log \left (-3+\frac {x}{4}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 16, normalized size = 0.76 \begin {gather*} {\left (x + e^{x} + 2\right )}^{\frac {1}{2 \, \log \left (\frac {1}{4} \, x - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x + e^{x} + 2\right )} \log \left (x + e^{x} + 2\right ) - {\left ({\left (x - 12\right )} e^{x} + x - 12\right )} \log \left (\frac {1}{4} \, x - 3\right )\right )} {\left (x + e^{x} + 2\right )}^{\frac {1}{2 \, \log \left (\frac {1}{4} \, x - 3\right )}}}{2 \, {\left (x^{2} + {\left (x - 12\right )} e^{x} - 10 \, x - 24\right )} \log \left (\frac {1}{4} \, x - 3\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.95
method | result | size |
risch | \(\left ({\mathrm e}^{x}+2+x \right )^{\frac {1}{-4 \ln \relax (2)+2 \ln \left (x -12\right )}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 23, normalized size = 1.10 \begin {gather*} \frac {1}{{\left (x + e^{x} + 2\right )}^{\frac {1}{2 \, {\left (2 \, \log \relax (2) - \log \left (x - 12\right )\right )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.79, size = 17, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{\frac {\ln \left (x+{\mathrm {e}}^x+2\right )}{2\,\ln \left (\frac {x}{4}-3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________