3.49.71 14(8x12x2+e4(4x3x2)+e4(44x)log(5))dx

Optimal. Leaf size=26 2x(x+x2+14e4(2+x)(x+2log(5)))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 3, number of rules used = 1, integrand size = 37, number of rulesintegrand size = 0.027, Rules used = {12} 14e4x3x3e4x22x212e4(x+1)2log(5)

Antiderivative was successfully verified.

[In]

Int[(-8*x - 12*x^2 + E^4*(-4*x - 3*x^2) + E^4*(-4 - 4*x)*Log[5])/4,x]

[Out]

-x^2 - (E^4*x^2)/2 - x^3 - (E^4*x^3)/4 - (E^4*(1 + x)^2*Log[5])/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

integral=14(8x12x2+e4(4x3x2)+e4(44x)log(5))dx=x2x312e4(1+x)2log(5)+14e4(4x3x2)dx=x2e4x22x3e4x3412e4(1+x)2log(5)

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 38, normalized size = 1.46 14(4+e4)x3e4xlog(5)12x2(2+e4(1+log(5)))

Antiderivative was successfully verified.

[In]

Integrate[(-8*x - 12*x^2 + E^4*(-4*x - 3*x^2) + E^4*(-4 - 4*x)*Log[5])/4,x]

[Out]

-1/4*((4 + E^4)*x^3) - E^4*x*Log[5] - (x^2*(2 + E^4*(1 + Log[5])))/2

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 37, normalized size = 1.42 x312(x2+2x)e4log(5)x214(x3+2x2)e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x-4)*exp(4)*log(5)+1/4*(-3*x^2-4*x)*exp(4)-3*x^2-2*x,x, algorithm="fricas")

[Out]

-x^3 - 1/2*(x^2 + 2*x)*e^4*log(5) - x^2 - 1/4*(x^3 + 2*x^2)*e^4

________________________________________________________________________________________

giac [A]  time = 1.76, size = 37, normalized size = 1.42 x312(x2+2x)e4log(5)x214(x3+2x2)e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x-4)*exp(4)*log(5)+1/4*(-3*x^2-4*x)*exp(4)-3*x^2-2*x,x, algorithm="giac")

[Out]

-x^3 - 1/2*(x^2 + 2*x)*e^4*log(5) - x^2 - 1/4*(x^3 + 2*x^2)*e^4

________________________________________________________________________________________

maple [A]  time = 0.04, size = 35, normalized size = 1.35




method result size



norman (e441)x3+(e4ln(5)2e421)x2e4ln(5)x 35
gosper x(2e4ln(5)x+x2e4+4e4ln(5)+2xe4+4x2+4x)4 37
default e4ln(5)(2x24x)4+e4(x32x2)4x3x2 42
risch e4ln(5)x22e4ln(5)xx3e44x2e42x3x2 42



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(-4*x-4)*exp(4)*ln(5)+1/4*(-3*x^2-4*x)*exp(4)-3*x^2-2*x,x,method=_RETURNVERBOSE)

[Out]

(-1/4*exp(4)-1)*x^3+(-1/2*exp(4)*ln(5)-1/2*exp(4)-1)*x^2-exp(4)*ln(5)*x

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 37, normalized size = 1.42 x312(x2+2x)e4log(5)x214(x3+2x2)e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x-4)*exp(4)*log(5)+1/4*(-3*x^2-4*x)*exp(4)-3*x^2-2*x,x, algorithm="maxima")

[Out]

-x^3 - 1/2*(x^2 + 2*x)*e^4*log(5) - x^2 - 1/4*(x^3 + 2*x^2)*e^4

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 36, normalized size = 1.38 (e441)x3+(e42e4ln(5)21)x2e4ln(5)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(- 2*x - (exp(4)*(4*x + 3*x^2))/4 - 3*x^2 - (exp(4)*log(5)*(4*x + 4))/4,x)

[Out]

- x^3*(exp(4)/4 + 1) - x^2*(exp(4)/2 + (exp(4)*log(5))/2 + 1) - x*exp(4)*log(5)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 39, normalized size = 1.50 x3(e441)+x2(e4log(5)2e421)xe4log(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x-4)*exp(4)*ln(5)+1/4*(-3*x**2-4*x)*exp(4)-3*x**2-2*x,x)

[Out]

x**3*(-exp(4)/4 - 1) + x**2*(-exp(4)*log(5)/2 - exp(4)/2 - 1) - x*exp(4)*log(5)

________________________________________________________________________________________