Optimal. Leaf size=30 \[ 4\ 3^{-x/4} \left (\frac {1}{e^4-e^5-x}\right )^{x/4} x \]
________________________________________________________________________________________
Rubi [F] time = 1.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \left (-4 e^4+4 e^5+4 x-x^2+\left (-e^4 x+e^5 x+x^2\right ) \log \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )\right )}{-e^4+e^5+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \left (4 (1-e) e^4-4 x+x^2-\left (-e^4 x+e^5 x+x^2\right ) \log \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )\right )}{e^4-e^5-x} \, dx\\ &=\int \left (\frac {\left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \left (4 (1-e) e^4-4 x+x^2\right )}{e^4-e^5-x}+x \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \log \left (\frac {1}{3 e^4-3 e^5-3 x}\right )\right ) \, dx\\ &=\int \frac {\left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \left (4 (1-e) e^4-4 x+x^2\right )}{e^4-e^5-x} \, dx+\int x \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \log \left (\frac {1}{3 e^4-3 e^5-3 x}\right ) \, dx\\ &=4 \operatorname {Subst}\left (\int \frac {\left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x \left (4 (1-e) e^4-16 x+16 x^2\right )}{e^4-e^5-4 x} \, dx,x,\frac {x}{4}\right )+\log \left (\frac {1}{3 e^4-3 e^5-3 x}\right ) \int x \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \, dx-\int \frac {\int \left (\frac {1}{3 e^4-3 e^5-3 x}\right )^{x/4} x \, dx}{e^4-e^5-x} \, dx\\ &=4 \operatorname {Subst}\left (\int \left (4 \left (1+\frac {1}{4} (-1+e) e^4\right ) \left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x-4 x \left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x-\frac {(-1+e)^2 e^8 \left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x}{-e^4+e^5+4 x}\right ) \, dx,x,\frac {x}{4}\right )+\log \left (\frac {1}{3 e^4-3 e^5-3 x}\right ) \int x \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \, dx-\int \frac {\int \left (\frac {1}{3 e^4-3 e^5-3 x}\right )^{x/4} x \, dx}{e^4-e^5-x} \, dx\\ &=-\left (16 \operatorname {Subst}\left (\int x \left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x \, dx,x,\frac {x}{4}\right )\right )-\left (4 (1-e)^2 e^8\right ) \operatorname {Subst}\left (\int \frac {\left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x}{-e^4+e^5+4 x} \, dx,x,\frac {x}{4}\right )+\left (16 \left (1+\frac {1}{4} (-1+e) e^4\right )\right ) \operatorname {Subst}\left (\int \left (-\frac {1}{-3 e^4+3 e^5+12 x}\right )^x \, dx,x,\frac {x}{4}\right )+\log \left (\frac {1}{3 e^4-3 e^5-3 x}\right ) \int x \left (-\frac {1}{-3 e^4+3 e^5+3 x}\right )^{x/4} \, dx-\int \frac {\int \left (\frac {1}{3 e^4-3 e^5-3 x}\right )^{x/4} x \, dx}{e^4-e^5-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 0.83 \begin {gather*} 4 \left (\frac {1}{3 e^4-3 e^5-3 x}\right )^{x/4} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 19, normalized size = 0.63 \begin {gather*} 4 \, x \left (-\frac {1}{3 \, {\left (x + e^{5} - e^{4}\right )}}\right )^{\frac {1}{4} \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{2} - {\left (x^{2} + x e^{5} - x e^{4}\right )} \log \left (-\frac {1}{3 \, {\left (x + e^{5} - e^{4}\right )}}\right ) - 4 \, x - 4 \, e^{5} + 4 \, e^{4}\right )} \left (-\frac {1}{3 \, {\left (x + e^{5} - e^{4}\right )}}\right )^{\frac {1}{4} \, x}}{x + e^{5} - e^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 24, normalized size = 0.80
method | result | size |
risch | \(4 x \left (-\frac {1}{3 \,{\mathrm e}^{5}-3 \,{\mathrm e}^{4}+3 x}\right )^{\frac {x}{4}}\) | \(24\) |
default | \(4 x \,{\mathrm e}^{\frac {x \ln \left (-\frac {1}{3 \,{\mathrm e}^{5}-3 \,{\mathrm e}^{4}+3 x}\right )}{4}}\) | \(25\) |
norman | \(4 x \,{\mathrm e}^{\frac {x \ln \left (-\frac {1}{3 \,{\mathrm e}^{5}-3 \,{\mathrm e}^{4}+3 x}\right )}{4}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 24, normalized size = 0.80 \begin {gather*} 4 \, x e^{\left (-\frac {1}{4} \, x \log \relax (3) - \frac {1}{4} \, x \log \left (-x - e^{5} + e^{4}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.06, size = 23, normalized size = 0.77 \begin {gather*} 4\,x\,{\left (-\frac {1}{3\,x-3\,{\mathrm {e}}^4+3\,{\mathrm {e}}^5}\right )}^{x/4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 26, normalized size = 0.87 \begin {gather*} 4 x e^{\frac {x \log {\left (- \frac {1}{3 x - 3 e^{4} + 3 e^{5}} \right )}}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________