Optimal. Leaf size=24 \[ \frac {1+\log \left (\log \left (\log \left ((1-x) (x+\log (16))+\log \left (x^2\right )\right )\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 4.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+x-2 x^2-x \log (16)+\left (-x+x^2+(-1+x) \log (16)-\log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )+\left (-x+x^2+(-1+x) \log (16)-\log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right ) \log \left (\log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )\right )}{\left (x^3-x^4+\left (x^2-x^3\right ) \log (16)+x^2 \log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-2 x^2+x (1-\log (16))+\left (-x+x^2+(-1+x) \log (16)-\log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )+\left (-x+x^2+(-1+x) \log (16)-\log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right ) \log \left (\log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )\right )}{\left (x^3-x^4+\left (x^2-x^3\right ) \log (16)+x^2 \log \left (x^2\right )\right ) \log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right ) \log \left (\log \left (x-x^2+(1-x) \log (16)+\log \left (x^2\right )\right )\right )} \, dx\\ &=\int \left (\frac {-2+2 x^2-x (1-\log (16))-x^2 \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+x (1-\log (16)) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+\log (16) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+\log \left (x^2\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}{x^2 \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}-\frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2}\right ) \, dx\\ &=\int \frac {-2+2 x^2-x (1-\log (16))-x^2 \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+x (1-\log (16)) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+\log (16) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )+\log \left (x^2\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}{x^2 \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ &=\int \frac {-2+2 x^2+x (-1+\log (16))+\left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}{x^2 \left (x (-1+x+\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ &=\int \left (-\frac {1}{x^2}+\frac {-2+2 x^2-x (1-\log (16))}{x^2 \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}\right ) \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}+\int \frac {-2+2 x^2-x (1-\log (16))}{x^2 \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}+\int \left (\frac {2}{\left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}+\frac {-1+\log (16)}{x \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}+\frac {2}{x^2 \left (-x^2+x (1-\log (16))+\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )}\right ) \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}+2 \int \frac {1}{\left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx+2 \int \frac {1}{x^2 \left (-x^2+x (1-\log (16))+\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx+(-1+\log (16)) \int \frac {1}{x \left (x^2-x (1-\log (16))-\log \left (16 x^2\right )\right ) \log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right ) \log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )} \, dx-\int \frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.04 \begin {gather*} \frac {1}{x}+\frac {\log \left (\log \left (\log \left (-((-1+x) (x+\log (16)))+\log \left (x^2\right )\right )\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 27, normalized size = 1.12 \begin {gather*} \frac {\log \left (\log \left (\log \left (-x^{2} - 4 \, {\left (x - 1\right )} \log \relax (2) + x + \log \left (x^{2}\right )\right )\right )\right ) + 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 6.63, size = 31, normalized size = 1.29 \begin {gather*} \frac {\log \left (\log \left (\log \left (-x^{2} - 4 \, x \log \relax (2) + x + 4 \, \log \relax (2) + \log \left (x^{2}\right )\right )\right )\right )}{x} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (-\ln \left (x^{2}\right )+4 \left (x -1\right ) \ln \relax (2)+x^{2}-x \right ) \ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right ) \ln \left (\ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right )\right ) \ln \left (\ln \left (\ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right )\right )\right )+\left (-\ln \left (x^{2}\right )+4 \left (x -1\right ) \ln \relax (2)+x^{2}-x \right ) \ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right ) \ln \left (\ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right )\right )-4 x \ln \relax (2)-2 x^{2}+x +2}{\left (x^{2} \ln \left (x^{2}\right )+4 \left (-x^{3}+x^{2}\right ) \ln \relax (2)-x^{4}+x^{3}\right ) \ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right ) \ln \left (\ln \left (\ln \left (x^{2}\right )+4 \left (1-x \right ) \ln \relax (2)-x^{2}+x \right )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 32, normalized size = 1.33 \begin {gather*} \frac {\log \left (\log \left (\log \left (-x^{2} - x {\left (4 \, \log \relax (2) - 1\right )} + 4 \, \log \relax (2) + 2 \, \log \relax (x)\right )\right )\right ) + 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________