Optimal. Leaf size=36 \[ \frac {1}{4} \left (-x+\frac {2}{25+\frac {x}{5 (3-x)}+\log \left (\frac {e^{2 x}}{x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {450-141855 x+93650 x^2-15476 x^3+\left (-11250 x+7470 x^2-1240 x^3\right ) \log \left (\frac {e^{2 x}}{x}\right )+\left (-225 x+150 x^2-25 x^3\right ) \log ^2\left (\frac {e^{2 x}}{x}\right )}{562500 x-372000 x^2+61504 x^3+\left (45000 x-29880 x^2+4960 x^3\right ) \log \left (\frac {e^{2 x}}{x}\right )+\left (900 x-600 x^2+100 x^3\right ) \log ^2\left (\frac {e^{2 x}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {450-141855 x+93650 x^2-15476 x^3-10 x \left (1125-747 x+124 x^2\right ) \log \left (\frac {e^{2 x}}{x}\right )-25 (-3+x)^2 x \log ^2\left (\frac {e^{2 x}}{x}\right )}{4 x \left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {450-141855 x+93650 x^2-15476 x^3-10 x \left (1125-747 x+124 x^2\right ) \log \left (\frac {e^{2 x}}{x}\right )-25 (-3+x)^2 x \log ^2\left (\frac {e^{2 x}}{x}\right )}{x \left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-1-\frac {10 \left (-45+123 x-65 x^2+10 x^3\right )}{x \left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2}\right ) \, dx\\ &=-\frac {x}{4}-\frac {5}{2} \int \frac {-45+123 x-65 x^2+10 x^3}{x \left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ &=-\frac {x}{4}-\frac {5}{2} \int \frac {-45+123 x-65 x^2+10 x^3}{x \left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ &=-\frac {x}{4}-\frac {5}{2} \int \left (\frac {123}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2}-\frac {45}{x \left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2}-\frac {65 x}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2}+\frac {10 x^2}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2}\right ) \, dx\\ &=-\frac {x}{4}-25 \int \frac {x^2}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx+\frac {225}{2} \int \frac {1}{x \left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx+\frac {325}{2} \int \frac {x}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx-\frac {615}{2} \int \frac {1}{\left (-375+124 x-15 \log \left (\frac {e^{2 x}}{x}\right )+5 x \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ &=-\frac {x}{4}-25 \int \frac {x^2}{\left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx+\frac {225}{2} \int \frac {1}{x \left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx+\frac {325}{2} \int \frac {x}{\left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx-\frac {615}{2} \int \frac {1}{\left (375-124 x-5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 52, normalized size = 1.44 \begin {gather*} -\frac {30-385 x+124 x^2+5 (-3+x) x \log \left (\frac {e^{2 x}}{x}\right )}{4 \left (-375+124 x+5 (-3+x) \log \left (\frac {e^{2 x}}{x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 51, normalized size = 1.42 \begin {gather*} -\frac {124 \, x^{2} + 5 \, {\left (x^{2} - 3 \, x\right )} \log \left (\frac {e^{\left (2 \, x\right )}}{x}\right ) - 385 \, x + 30}{4 \, {\left (5 \, {\left (x - 3\right )} \log \left (\frac {e^{\left (2 \, x\right )}}{x}\right ) + 124 \, x - 375\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 30, normalized size = 0.83 \begin {gather*} -\frac {1}{4} \, x + \frac {5 \, {\left (x - 3\right )}}{2 \, {\left (10 \, x^{2} - 5 \, x \log \relax (x) + 94 \, x + 15 \, \log \relax (x) - 375\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 112, normalized size = 3.11
method | result | size |
default | \(\frac {\left (-31-\frac {5 \ln \left (\frac {{\mathrm e}^{2 x}}{x}\right )}{4}-\frac {5 \ln \relax (x )}{4}+\frac {5 x}{2}\right ) x^{2}+\frac {13 x}{4}+\frac {5 x^{2} \ln \relax (x )}{4}-\frac {5 x^{3}}{2}+\frac {1095}{4}+\frac {45 \ln \left (\frac {{\mathrm e}^{2 x}}{x}\right )}{4}}{10 x^{2}-5 x \ln \relax (x )+5 x \left (\ln \left (\frac {{\mathrm e}^{2 x}}{x}\right )-2 \ln \left ({\mathrm e}^{x}\right )+\ln \relax (x )\right )+10 x \left (\ln \left ({\mathrm e}^{x}\right )-x \right )+124 x -15 \ln \left (\frac {{\mathrm e}^{2 x}}{x}\right )-375}\) | \(112\) |
risch | \(-\frac {x}{4}+\frac {5 i \left (x -3\right )}{5 \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )-5 \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}+5 \pi x \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-10 \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+5 \pi x \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-5 \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}+5 \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{3}-15 \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )+15 \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}-15 \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+30 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}-15 \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}+15 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{2}-15 \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 x}}{x}\right )^{3}+30 i \ln \relax (x )-60 i \ln \left ({\mathrm e}^{x}\right )+248 i x +20 i x \ln \left ({\mathrm e}^{x}\right )-10 i x \ln \relax (x )-750 i}\) | \(337\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 47, normalized size = 1.31 \begin {gather*} -\frac {10 \, x^{3} + 94 \, x^{2} - 5 \, {\left (x^{2} - 3 \, x\right )} \log \relax (x) - 385 \, x + 30}{4 \, {\left (10 \, x^{2} - 5 \, {\left (x - 3\right )} \log \relax (x) + 94 \, x - 375\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {141855\,x+{\ln \left (\frac {{\mathrm {e}}^{2\,x}}{x}\right )}^2\,\left (25\,x^3-150\,x^2+225\,x\right )-93650\,x^2+15476\,x^3+\ln \left (\frac {{\mathrm {e}}^{2\,x}}{x}\right )\,\left (1240\,x^3-7470\,x^2+11250\,x\right )-450}{562500\,x+{\ln \left (\frac {{\mathrm {e}}^{2\,x}}{x}\right )}^2\,\left (100\,x^3-600\,x^2+900\,x\right )-372000\,x^2+61504\,x^3+\ln \left (\frac {{\mathrm {e}}^{2\,x}}{x}\right )\,\left (4960\,x^3-29880\,x^2+45000\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 0.72 \begin {gather*} - \frac {x}{4} + \frac {5 x - 15}{248 x + \left (10 x - 30\right ) \log {\left (\frac {e^{2 x}}{x} \right )} - 750} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________