Optimal. Leaf size=21 \[ 3+\frac {x^2}{x-2 x^2+\log \left (e^x+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+x^3+\left (2 e^x x+2 x^2\right ) \log \left (e^x+x\right )}{x^3-4 x^4+4 x^5+e^x \left (x^2-4 x^3+4 x^4\right )+\left (2 x^2-4 x^3+e^x \left (2 x-4 x^2\right )\right ) \log \left (e^x+x\right )+\left (e^x+x\right ) \log ^2\left (e^x+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left ((-1+x) x+2 \left (e^x+x\right ) \log \left (e^x+x\right )\right )}{\left (e^x+x\right ) \left (x-2 x^2+\log \left (e^x+x\right )\right )^2} \, dx\\ &=\int \left (\frac {(-1+x) x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}+\frac {2 x \log \left (e^x+x\right )}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {x \log \left (e^x+x\right )}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx+\int \frac {(-1+x) x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx\\ &=2 \int \left (\frac {x^2 (-1+2 x)}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}-\frac {x}{-x+2 x^2-\log \left (e^x+x\right )}\right ) \, dx+\int \left (-\frac {x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}+\frac {x^3}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {x^2 (-1+2 x)}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx-2 \int \frac {x}{-x+2 x^2-\log \left (e^x+x\right )} \, dx-\int \frac {x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx+\int \frac {x^3}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx\\ &=2 \int \left (-\frac {x^2}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}+\frac {2 x^3}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2}\right ) \, dx-2 \int \frac {x}{-x+2 x^2-\log \left (e^x+x\right )} \, dx-\int \frac {x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx+\int \frac {x^3}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x^2}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx\right )-2 \int \frac {x}{-x+2 x^2-\log \left (e^x+x\right )} \, dx+4 \int \frac {x^3}{\left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx-\int \frac {x^2}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx+\int \frac {x^3}{\left (e^x+x\right ) \left (-x+2 x^2-\log \left (e^x+x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 19, normalized size = 0.90 \begin {gather*} \frac {x^2}{x-2 x^2+\log \left (e^x+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 23, normalized size = 1.10 \begin {gather*} -\frac {x^{2}}{2 \, x^{2} - x - \log \left (x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 23, normalized size = 1.10 \begin {gather*} -\frac {x^{2}}{2 \, x^{2} - x - \log \left (x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.14
method | result | size |
risch | \(-\frac {x^{2}}{2 x^{2}-x -\ln \left ({\mathrm e}^{x}+x \right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 1.10 \begin {gather*} -\frac {x^{2}}{2 \, x^{2} - x - \log \left (x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {\ln \left (x+{\mathrm {e}}^x\right )\,\left (2\,x\,{\mathrm {e}}^x+2\,x^2\right )-x^2+x^3}{{\ln \left (x+{\mathrm {e}}^x\right )}^2\,\left (x+{\mathrm {e}}^x\right )+x^3-4\,x^4+4\,x^5+{\mathrm {e}}^x\,\left (4\,x^4-4\,x^3+x^2\right )+\ln \left (x+{\mathrm {e}}^x\right )\,\left ({\mathrm {e}}^x\,\left (2\,x-4\,x^2\right )+2\,x^2-4\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 15, normalized size = 0.71 \begin {gather*} \frac {x^{2}}{- 2 x^{2} + x + \log {\left (x + e^{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________