Optimal. Leaf size=25 \[ -2+2 \left (4+2 x+\log (4)+\frac {x}{\log \left (e^3-2 x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^2+\left (2 e^3-4 x^2\right ) \log \left (e^3-2 x^2\right )+\left (4 e^3-8 x^2\right ) \log ^2\left (e^3-2 x^2\right )}{\left (e^3-2 x^2\right ) \log ^2\left (e^3-2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4+\frac {8 x^2}{\left (e^3-2 x^2\right ) \log ^2\left (e^3-2 x^2\right )}+\frac {2}{\log \left (e^3-2 x^2\right )}\right ) \, dx\\ &=4 x+2 \int \frac {1}{\log \left (e^3-2 x^2\right )} \, dx+8 \int \frac {x^2}{\left (e^3-2 x^2\right ) \log ^2\left (e^3-2 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.93, size = 19, normalized size = 0.76 \begin {gather*} 4 x+\frac {2 x}{\log \left (e^3-2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.19, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 \, {\left (2 \, x \log \left (-2 \, x^{2} + e^{3}\right ) + x\right )}}{\log \left (-2 \, x^{2} + e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 \, {\left (2 \, x \log \left (-2 \, x^{2} + e^{3}\right ) + x\right )}}{\log \left (-2 \, x^{2} + e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 19, normalized size = 0.76
method | result | size |
risch | \(4 x +\frac {2 x}{\ln \left ({\mathrm e}^{3}-2 x^{2}\right )}\) | \(19\) |
norman | \(\frac {2 x +4 x \ln \left ({\mathrm e}^{3}-2 x^{2}\right )}{\ln \left ({\mathrm e}^{3}-2 x^{2}\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 \, {\left (2 \, x \log \left (-2 \, x^{2} + e^{3}\right ) + x\right )}}{\log \left (-2 \, x^{2} + e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 18, normalized size = 0.72 \begin {gather*} 4\,x+\frac {2\,x}{\ln \left ({\mathrm {e}}^3-2\,x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.60 \begin {gather*} 4 x + \frac {2 x}{\log {\left (- 2 x^{2} + e^{3} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________