Optimal. Leaf size=28 \[ -81+e^3+3 \left (-2+\frac {4 e^{-1/x} (x-\log (3))}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 24, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 3, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6741, 12, 2288} \begin {gather*} \frac {12 e^{-1/x} (x \log (x)-\log (3) \log (x))}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 e^{-1/x} \left (-x^2+x \log (3)+x \log (x)+x^2 \log (x)-\log (3) \log (x)\right )}{x^2 \log ^2(x)} \, dx\\ &=12 \int \frac {e^{-1/x} \left (-x^2+x \log (3)+x \log (x)+x^2 \log (x)-\log (3) \log (x)\right )}{x^2 \log ^2(x)} \, dx\\ &=\frac {12 e^{-1/x} (x \log (x)-\log (3) \log (x))}{\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 19, normalized size = 0.68 \begin {gather*} \frac {12 e^{-1/x} (x-\log (3))}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 18, normalized size = 0.64 \begin {gather*} \frac {12 \, {\left (x - \log \relax (3)\right )} e^{\left (-\frac {1}{x}\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 25, normalized size = 0.89 \begin {gather*} \frac {12 \, {\left (x e^{\left (-\frac {1}{x}\right )} - e^{\left (-\frac {1}{x}\right )} \log \relax (3)\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 19, normalized size = 0.68
method | result | size |
risch | \(-\frac {12 \left (\ln \relax (3)-x \right ) {\mathrm e}^{-\frac {1}{x}}}{\ln \relax (x )}\) | \(19\) |
derivativedivides | \(\frac {\left (12-\frac {12 \ln \relax (3)}{x}\right ) x \,{\mathrm e}^{-\frac {1}{x}}}{\ln \relax (x )}\) | \(22\) |
norman | \(\frac {\left (12 x^{2}-12 x \ln \relax (3)\right ) {\mathrm e}^{-\frac {1}{x}}}{x \ln \relax (x )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -12 \, \int \frac {{\left (x^{2} - x \log \relax (3) - {\left (x^{2} + x - \log \relax (3)\right )} \log \relax (x)\right )} e^{\left (-\frac {1}{x}\right )}}{x^{2} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 18, normalized size = 0.64 \begin {gather*} \frac {12\,{\mathrm {e}}^{-\frac {1}{x}}\,\left (x-\ln \relax (3)\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 0.54 \begin {gather*} \frac {\left (12 x - 12 \log {\relax (3 )}\right ) e^{- \frac {1}{x}}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________