Optimal. Leaf size=32 \[ 5 x+\frac {1}{5} \left (\log (3 x)-\log \left (\log \left (\frac {-e^{x/5}+x}{x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x/5} (5-x)+\left (-5 x-125 x^2+e^{x/5} (5+125 x)\right ) \log \left (\frac {-e^{x/5}+x}{x}\right )}{\left (25 e^{x/5} x-25 x^2\right ) \log \left (\frac {-e^{x/5}+x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+125 x-\frac {e^{x/5} (-5+x)}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )}}{25 x} \, dx\\ &=\frac {1}{25} \int \frac {5+125 x-\frac {e^{x/5} (-5+x)}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )}}{x} \, dx\\ &=\frac {1}{25} \int \left (\frac {-5+x}{\left (-e^{x/5}+x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )}+\frac {5-x+5 \log \left (1-\frac {e^{x/5}}{x}\right )+125 x \log \left (1-\frac {e^{x/5}}{x}\right )}{x \log \left (1-\frac {e^{x/5}}{x}\right )}\right ) \, dx\\ &=\frac {1}{25} \int \frac {-5+x}{\left (-e^{x/5}+x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{25} \int \frac {5-x+5 \log \left (1-\frac {e^{x/5}}{x}\right )+125 x \log \left (1-\frac {e^{x/5}}{x}\right )}{x \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ &=\frac {1}{25} \int \left (\frac {5}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )}-\frac {x}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )}\right ) \, dx+\frac {1}{25} \int \frac {5-x+5 (1+25 x) \log \left (1-\frac {e^{x/5}}{x}\right )}{x \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ &=\frac {1}{25} \int \left (\frac {5 (1+25 x)}{x}+\frac {5-x}{x \log \left (1-\frac {e^{x/5}}{x}\right )}\right ) \, dx-\frac {1}{25} \int \frac {x}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{5} \int \frac {1}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ &=\frac {1}{25} \int \frac {5-x}{x \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx-\frac {1}{25} \int \frac {x}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{5} \int \frac {1+25 x}{x} \, dx+\frac {1}{5} \int \frac {1}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ &=\frac {1}{25} \int \left (-\frac {1}{\log \left (1-\frac {e^{x/5}}{x}\right )}+\frac {5}{x \log \left (1-\frac {e^{x/5}}{x}\right )}\right ) \, dx-\frac {1}{25} \int \frac {x}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{5} \int \left (25+\frac {1}{x}\right ) \, dx+\frac {1}{5} \int \frac {1}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ &=5 x+\frac {\log (x)}{5}-\frac {1}{25} \int \frac {1}{\log \left (1-\frac {e^{x/5}}{x}\right )} \, dx-\frac {1}{25} \int \frac {x}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{5} \int \frac {1}{\left (e^{x/5}-x\right ) \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx+\frac {1}{5} \int \frac {1}{x \log \left (1-\frac {e^{x/5}}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 30, normalized size = 0.94 \begin {gather*} \frac {1}{25} \left (125 x+5 \log (x)-5 \log \left (\log \left (1-\frac {e^{x/5}}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 24, normalized size = 0.75 \begin {gather*} 5 \, x + \frac {1}{5} \, \log \relax (x) - \frac {1}{5} \, \log \left (\log \left (\frac {x - e^{\left (\frac {1}{5} \, x\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 24, normalized size = 0.75 \begin {gather*} 5 \, x + \frac {1}{5} \, \log \relax (x) - \frac {1}{5} \, \log \left (\log \left (\frac {x - e^{\left (\frac {1}{5} \, x\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.78
method | result | size |
norman | \(5 x +\frac {\ln \relax (x )}{5}-\frac {\ln \left (\ln \left (\frac {-{\mathrm e}^{\frac {x}{5}}+x}{x}\right )\right )}{5}\) | \(25\) |
risch | \(5 x +\frac {\ln \relax (x )}{5}-\frac {\ln \left (\ln \left (-{\mathrm e}^{\frac {x}{5}}+x \right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (-{\mathrm e}^{\frac {x}{5}}+x \right )}{x}\right )^{3}-2 i \ln \relax (x )\right )}{2}\right )}{5}\) | \(145\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 25, normalized size = 0.78 \begin {gather*} 5 \, x + \frac {1}{5} \, \log \relax (x) - \frac {1}{5} \, \log \left (\log \left (x - e^{\left (\frac {1}{5} \, x\right )}\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.66, size = 24, normalized size = 0.75 \begin {gather*} 5\,x-\frac {\ln \left (\ln \left (\frac {x-{\left ({\mathrm {e}}^x\right )}^{1/5}}{x}\right )\right )}{5}+\frac {\ln \relax (x)}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 20, normalized size = 0.62 \begin {gather*} 5 x + \frac {\log {\relax (x )}}{5} - \frac {\log {\left (\log {\left (\frac {x - e^{\frac {x}{5}}}{x} \right )} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________