Optimal. Leaf size=18 \[ \frac {(3+x) \log ^2(1-x)}{x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (6 x^2+2 x^3\right ) \log (1-x)+\left (3+x-4 x^2\right ) \log ^2(1-x)+\left (\left (6 x+2 x^2\right ) \log (1-x)+\left (-x+x^2\right ) \log ^2(1-x)\right ) \log (x)}{-x^3+x^4+\left (-2 x^2+2 x^3\right ) \log (x)+\left (-x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (1-x) \left (\log (1-x) \left (-4-\frac {3}{x}+\log (x)\right )+\frac {2 (3+x) (x+\log (x))}{-1+x}\right )}{(x+\log (x))^2} \, dx\\ &=\int \left (-\frac {\left (3+4 x+x^2\right ) \log ^2(1-x)}{x (x+\log (x))^2}+\frac {\log (1-x) (6+2 x-\log (1-x)+x \log (1-x))}{(-1+x) (x+\log (x))}\right ) \, dx\\ &=-\int \frac {\left (3+4 x+x^2\right ) \log ^2(1-x)}{x (x+\log (x))^2} \, dx+\int \frac {\log (1-x) (6+2 x-\log (1-x)+x \log (1-x))}{(-1+x) (x+\log (x))} \, dx\\ &=-\int \left (\frac {4 \log ^2(1-x)}{(x+\log (x))^2}+\frac {3 \log ^2(1-x)}{x (x+\log (x))^2}+\frac {x \log ^2(1-x)}{(x+\log (x))^2}\right ) \, dx+\int \left (\frac {6 \log (1-x)}{(-1+x) (x+\log (x))}+\frac {2 x \log (1-x)}{(-1+x) (x+\log (x))}-\frac {\log ^2(1-x)}{(-1+x) (x+\log (x))}+\frac {x \log ^2(1-x)}{(-1+x) (x+\log (x))}\right ) \, dx\\ &=2 \int \frac {x \log (1-x)}{(-1+x) (x+\log (x))} \, dx-3 \int \frac {\log ^2(1-x)}{x (x+\log (x))^2} \, dx-4 \int \frac {\log ^2(1-x)}{(x+\log (x))^2} \, dx+6 \int \frac {\log (1-x)}{(-1+x) (x+\log (x))} \, dx-\int \frac {x \log ^2(1-x)}{(x+\log (x))^2} \, dx-\int \frac {\log ^2(1-x)}{(-1+x) (x+\log (x))} \, dx+\int \frac {x \log ^2(1-x)}{(-1+x) (x+\log (x))} \, dx\\ &=2 \int \left (\frac {\log (1-x)}{x+\log (x)}+\frac {\log (1-x)}{(-1+x) (x+\log (x))}\right ) \, dx-3 \int \frac {\log ^2(1-x)}{x (x+\log (x))^2} \, dx-4 \int \frac {\log ^2(1-x)}{(x+\log (x))^2} \, dx+6 \int \frac {\log (1-x)}{(-1+x) (x+\log (x))} \, dx-\int \frac {x \log ^2(1-x)}{(x+\log (x))^2} \, dx-\int \frac {\log ^2(1-x)}{(-1+x) (x+\log (x))} \, dx+\int \left (\frac {\log ^2(1-x)}{x+\log (x)}+\frac {\log ^2(1-x)}{(-1+x) (x+\log (x))}\right ) \, dx\\ &=2 \int \frac {\log (1-x)}{x+\log (x)} \, dx+2 \int \frac {\log (1-x)}{(-1+x) (x+\log (x))} \, dx-3 \int \frac {\log ^2(1-x)}{x (x+\log (x))^2} \, dx-4 \int \frac {\log ^2(1-x)}{(x+\log (x))^2} \, dx+6 \int \frac {\log (1-x)}{(-1+x) (x+\log (x))} \, dx-\int \frac {x \log ^2(1-x)}{(x+\log (x))^2} \, dx+\int \frac {\log ^2(1-x)}{x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 18, normalized size = 1.00 \begin {gather*} \frac {(3+x) \log ^2(1-x)}{x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 18, normalized size = 1.00 \begin {gather*} \frac {{\left (x + 3\right )} \log \left (-x + 1\right )^{2}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 18, normalized size = 1.00 \begin {gather*} \frac {{\left (x + 3\right )} \log \left (-x + 1\right )^{2}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 1.06
method | result | size |
risch | \(\frac {\ln \left (1-x \right )^{2} \left (3+x \right )}{x +\ln \relax (x )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 1.00 \begin {gather*} \frac {{\left (x + 3\right )} \log \left (-x + 1\right )^{2}}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 18, normalized size = 1.00 \begin {gather*} \frac {{\ln \left (1-x\right )}^2\,\left (x+3\right )}{x+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 14, normalized size = 0.78 \begin {gather*} \frac {\left (x + 3\right ) \log {\left (1 - x \right )}^{2}}{x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________