Optimal. Leaf size=27 \[ x \left (e^x+\frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+e^{\frac {2}{x^2}} \left (4+x^2\right )+\left (x^2+e^{\frac {2}{x^2}} x^2\right ) \log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )+\log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right ) \left (x^2+e^{\frac {2}{x^2}} x^2+e^x \left (x^2+x^3+e^{\frac {2}{x^2}} \left (x^2+x^3\right )\right )+\left (x^2+e^{\frac {2}{x^2}} x^2\right ) \log (x)\right )}{\left (x^2+e^{\frac {2}{x^2}} x^2\right ) \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+e^x+e^x x+\frac {x^2+e^{\frac {2}{x^2}} \left (4+x^2\right )}{\left (1+e^{\frac {2}{x^2}}\right ) x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\log (x)\right ) \, dx\\ &=x+\int e^x \, dx+\int e^x x \, dx+\int \frac {x^2+e^{\frac {2}{x^2}} \left (4+x^2\right )}{\left (1+e^{\frac {2}{x^2}}\right ) x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \log (x) \, dx\\ &=e^x+e^x x+x \log (x)-\int e^x \, dx+\int \left (-\frac {4}{\left (1+e^{\frac {2}{x^2}}\right ) x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\frac {4+x^2}{x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}\right ) \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx\\ &=e^x x+x \log (x)-4 \int \frac {1}{\left (1+e^{\frac {2}{x^2}}\right ) x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \frac {4+x^2}{x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx\\ &=e^x x+x \log (x)+4 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x^2}\right ) \log ^2\left (\frac {1}{5} \left (1+e^{2 x^2}\right ) x\right )} \, dx,x,\frac {1}{x}\right )+\int \left (\frac {1}{\log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\frac {4}{x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}\right ) \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx\\ &=e^x x+x \log (x)+4 \int \frac {1}{x^2 \log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+4 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x^2}\right ) \log ^2\left (\frac {1}{5} \left (1+e^{2 x^2}\right ) x\right )} \, dx,x,\frac {1}{x}\right )+\int \frac {1}{\log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx\\ &=e^x x+x \log (x)-4 \operatorname {Subst}\left (\int \frac {1}{\log ^2\left (\frac {1}{5} \left (1+e^{2 x^2}\right ) x\right )} \, dx,x,\frac {1}{x}\right )+4 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x^2}\right ) \log ^2\left (\frac {1}{5} \left (1+e^{2 x^2}\right ) x\right )} \, dx,x,\frac {1}{x}\right )+\int \frac {1}{\log ^2\left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx+\int \frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 27, normalized size = 1.00 \begin {gather*} x \left (e^x+\frac {1}{\log \left (\frac {1+e^{\frac {2}{x^2}}}{5 x}\right )}+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 43, normalized size = 1.59 \begin {gather*} \frac {{\left (x e^{x} + x \log \relax (x)\right )} \log \left (\frac {e^{\left (\frac {2}{x^{2}}\right )} + 1}{5 \, x}\right ) + x}{\log \left (\frac {e^{\left (\frac {2}{x^{2}}\right )} + 1}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.66, size = 75, normalized size = 2.78 \begin {gather*} \frac {x e^{x} \log \relax (5) + x e^{x} \log \relax (x) + x \log \relax (5) \log \relax (x) + x \log \relax (x)^{2} - x e^{x} \log \left (e^{\left (\frac {2}{x^{2}}\right )} + 1\right ) - x \log \relax (x) \log \left (e^{\left (\frac {2}{x^{2}}\right )} + 1\right ) - x}{\log \relax (5) + \log \relax (x) - \log \left (e^{\left (\frac {2}{x^{2}}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.41, size = 153, normalized size = 5.67
method | result | size |
risch | \({\mathrm e}^{x} x +x \ln \relax (x )+\frac {2 i x}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )}{x}\right )^{3}-2 i \ln \relax (5)-2 i \ln \relax (x )+2 i \ln \left ({\mathrm e}^{\frac {2}{x^{2}}}+1\right )}\) | \(153\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 67, normalized size = 2.48 \begin {gather*} \frac {x \log \relax (5) \log \relax (x) + x \log \relax (x)^{2} + {\left (x \log \relax (5) + x \log \relax (x)\right )} e^{x} - {\left (x e^{x} + x \log \relax (x)\right )} \log \left (e^{\left (\frac {2}{x^{2}}\right )} + 1\right ) - x}{\log \relax (5) + \log \relax (x) - \log \left (e^{\left (\frac {2}{x^{2}}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 144, normalized size = 5.33 \begin {gather*} \frac {x+\frac {x^3\,\ln \left (\frac {\frac {{\mathrm {e}}^{\frac {2}{x^2}}}{5}+\frac {1}{5}}{x}\right )\,\left ({\mathrm {e}}^{\frac {2}{x^2}}+1\right )}{4\,{\mathrm {e}}^{\frac {2}{x^2}}+x^2\,{\mathrm {e}}^{\frac {2}{x^2}}+x^2}}{\ln \left (\frac {\frac {{\mathrm {e}}^{\frac {2}{x^2}}}{5}+\frac {1}{5}}{x}\right )}-x+\frac {4\,x}{x^2+4}+x\,{\mathrm {e}}^x+x\,\ln \relax (x)-\frac {4\,\left (3\,x^{10}+4\,x^8\right )}{\left (x^2+4\right )\,\left ({\mathrm {e}}^{\frac {2}{x^2}}\,\left (x^2+4\right )+x^2\right )\,\left (3\,x^7+4\,x^5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.74, size = 26, normalized size = 0.96 \begin {gather*} x e^{x} + x \log {\relax (x )} + \frac {x}{\log {\left (\frac {\frac {e^{\frac {2}{x^{2}}}}{5} + \frac {1}{5}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________