Optimal. Leaf size=29 \[ \frac {2 \left (-1+2 x+\log \left (\left (1-e^x\right ) x \log (x)\right )\right )}{(2-x)^2 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-2 x+e^x (-4+2 x)+\left (12-18 x+12 x^2+e^x \left (-12+14 x-10 x^2\right )\right ) \log (x)+\left (-8+e^x (8-8 x)+8 x\right ) \log (x) \log \left (\left (x-e^x x\right ) \log (x)\right )}{\left (8 x^3-12 x^4+6 x^5-x^6+e^x \left (-8 x^3+12 x^4-6 x^5+x^6\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-\frac {-2+x}{\log (x)}-\frac {6-9 x+6 x^2+e^x \left (-6+7 x-5 x^2\right )-4 \left (-1+e^x\right ) (-1+x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{-1+e^x}\right )}{(2-x)^3 x^3} \, dx\\ &=2 \int \frac {-\frac {-2+x}{\log (x)}-\frac {6-9 x+6 x^2+e^x \left (-6+7 x-5 x^2\right )-4 \left (-1+e^x\right ) (-1+x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{-1+e^x}}{(2-x)^3 x^3} \, dx\\ &=2 \int \left (\frac {1}{\left (-1+e^x\right ) (-2+x)^2 x^2}+\frac {-2+x-6 \log (x)+7 x \log (x)-5 x^2 \log (x)+4 \log (x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )-4 x \log (x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{(-2+x)^3 x^3 \log (x)}\right ) \, dx\\ &=2 \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2 x^2} \, dx+2 \int \frac {-2+x-6 \log (x)+7 x \log (x)-5 x^2 \log (x)+4 \log (x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )-4 x \log (x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=2 \int \left (\frac {1}{4 \left (-1+e^x\right ) (-2+x)^2}-\frac {1}{4 \left (-1+e^x\right ) (-2+x)}+\frac {1}{4 \left (-1+e^x\right ) x^2}+\frac {1}{4 \left (-1+e^x\right ) x}\right ) \, dx+2 \int \left (-\frac {6}{(-2+x)^3 x^3}+\frac {7}{(-2+x)^3 x^2}-\frac {5}{(-2+x)^3 x}-\frac {2}{(-2+x)^3 x^3 \log (x)}+\frac {1}{(-2+x)^3 x^2 \log (x)}-\frac {4 (-1+x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{(-2+x)^3 x^3}\right ) \, dx\\ &=\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx-8 \int \frac {(-1+x) \log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )}{(-2+x)^3 x^3} \, dx-10 \int \frac {1}{(-2+x)^3 x} \, dx-12 \int \frac {1}{(-2+x)^3 x^3} \, dx+14 \int \frac {1}{(-2+x)^3 x^2} \, dx\\ &=\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx+8 \int \frac {-1+e^x-\log (x)+e^x (1+x) \log (x)}{4 \left (1-e^x\right ) (2-x)^2 x^3 \log (x)} \, dx-10 \int \left (\frac {1}{2 (-2+x)^3}-\frac {1}{4 (-2+x)^2}+\frac {1}{8 (-2+x)}-\frac {1}{8 x}\right ) \, dx-12 \int \left (\frac {1}{8 (-2+x)^3}-\frac {3}{16 (-2+x)^2}+\frac {3}{16 (-2+x)}-\frac {1}{8 x^3}-\frac {3}{16 x^2}-\frac {3}{16 x}\right ) \, dx+14 \int \left (\frac {1}{4 (-2+x)^3}-\frac {1}{4 (-2+x)^2}+\frac {3}{16 (-2+x)}-\frac {1}{8 x^2}-\frac {3}{16 x}\right ) \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx+2 \int \frac {-1+e^x-\log (x)+e^x (1+x) \log (x)}{\left (1-e^x\right ) (2-x)^2 x^3 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx+2 \int \left (-\frac {1}{\left (-1+e^x\right ) (-2+x)^2 x^2}+\frac {-1-\log (x)-x \log (x)}{(-2+x)^2 x^3 \log (x)}\right ) \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx-2 \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2 x^2} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx+2 \int \frac {-1-\log (x)-x \log (x)}{(-2+x)^2 x^3 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)^2} \, dx-\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) (-2+x)} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x^2} \, dx+\frac {1}{2} \int \frac {1}{\left (-1+e^x\right ) x} \, dx-2 \int \left (\frac {1}{4 \left (-1+e^x\right ) (-2+x)^2}-\frac {1}{4 \left (-1+e^x\right ) (-2+x)}+\frac {1}{4 \left (-1+e^x\right ) x^2}+\frac {1}{4 \left (-1+e^x\right ) x}\right ) \, dx+2 \int \left (\frac {-1-x}{(-2+x)^2 x^3}-\frac {1}{(-2+x)^2 x^3 \log (x)}\right ) \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+2 \int \frac {-1-x}{(-2+x)^2 x^3} \, dx-2 \int \frac {1}{(-2+x)^2 x^3 \log (x)} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {5}{4 (2-x)}-\frac {3}{4 x^2}-\frac {1}{2 x}-\frac {7}{8} \log (2-x)+\frac {7 \log (x)}{8}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}+2 \int \left (-\frac {3}{8 (-2+x)^2}+\frac {7}{16 (-2+x)}-\frac {1}{4 x^3}-\frac {1}{2 x^2}-\frac {7}{16 x}\right ) \, dx-2 \int \frac {1}{(-2+x)^2 x^3 \log (x)} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ &=\frac {3}{2 (2-x)^2}+\frac {1}{2 (2-x)}-\frac {1}{2 x^2}+\frac {1}{2 x}+\frac {2 \log \left (\left (1-e^x\right ) x \log (x)\right )}{(2-x)^2 x^2}-2 \int \frac {1}{(-2+x)^2 x^3 \log (x)} \, dx+2 \int \frac {1}{(-2+x)^3 x^2 \log (x)} \, dx-4 \int \frac {1}{(-2+x)^3 x^3 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.80, size = 26, normalized size = 0.90 \begin {gather*} \frac {2 \left (-1+2 x+\log \left (-\left (\left (-1+e^x\right ) x \log (x)\right )\right )\right )}{(-2+x)^2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 36, normalized size = 1.24 \begin {gather*} \frac {2 \, {\left (2 \, x + \log \left (-{\left (x e^{x} - x\right )} \log \relax (x)\right ) - 1\right )}}{x^{4} - 4 \, x^{3} + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 257, normalized size = 8.86
method | result | size |
risch | \(\frac {2 \ln \left ({\mathrm e}^{x}-1\right )}{\left (x^{2}-4 x +4\right ) x^{2}}+\frac {i \pi \mathrm {csgn}\left (i x \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{3}-i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{3}+i \pi \,\mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{2}-2 i \pi \mathrm {csgn}\left (i x \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i x \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )-i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-1\right )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left ({\mathrm e}^{x}-1\right )\right )+2 i \pi -2+4 x +2 \ln \relax (x )+2 \ln \left (\ln \relax (x )\right )}{\left (x^{2}-4 x +4\right ) x^{2}}\) | \(257\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 35, normalized size = 1.21 \begin {gather*} \frac {2 \, {\left (2 \, x + \log \relax (x) + \log \left (-e^{x} + 1\right ) + \log \left (\log \relax (x)\right ) - 1\right )}}{x^{4} - 4 \, x^{3} + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 26, normalized size = 0.90 \begin {gather*} \frac {2\,\left (2\,x+\ln \left (\ln \relax (x)\,\left (x-x\,{\mathrm {e}}^x\right )\right )-1\right )}{x^2\,{\left (x-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 44, normalized size = 1.52 \begin {gather*} - \frac {2 - 4 x}{x^{4} - 4 x^{3} + 4 x^{2}} + \frac {2 \log {\left (\left (- x e^{x} + x\right ) \log {\relax (x )} \right )}}{x^{4} - 4 x^{3} + 4 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________