Optimal. Leaf size=31 \[ -\frac {49}{16}+x-\frac {-\frac {5}{x}+\frac {x}{1-\frac {9}{x^4 \log ^2(x)}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-810+81 x^3+18 x^6 \log (x)+\left (180 x^4+36 x^6-18 x^7\right ) \log ^2(x)+\left (-10 x^8+x^{11}\right ) \log ^4(x)}{81 x^3-18 x^7 \log ^2(x)+x^{11} \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-810+81 x^3+18 x^6 \log (x)+\left (180 x^4+36 x^6-18 x^7\right ) \log ^2(x)+\left (-10 x^8+x^{11}\right ) \log ^4(x)}{x^3 \left (9-x^4 \log ^2(x)\right )^2} \, dx\\ &=\int \left (\frac {-10+x^3}{x^3}+\frac {3 \left (6+x^2\right )}{2 x \left (-3+x^2 \log (x)\right )^2}+\frac {3}{x \left (-3+x^2 \log (x)\right )}-\frac {3 \left (-6+x^2\right )}{2 x \left (3+x^2 \log (x)\right )^2}-\frac {3}{x \left (3+x^2 \log (x)\right )}\right ) \, dx\\ &=\frac {3}{2} \int \frac {6+x^2}{x \left (-3+x^2 \log (x)\right )^2} \, dx-\frac {3}{2} \int \frac {-6+x^2}{x \left (3+x^2 \log (x)\right )^2} \, dx+3 \int \frac {1}{x \left (-3+x^2 \log (x)\right )} \, dx-3 \int \frac {1}{x \left (3+x^2 \log (x)\right )} \, dx+\int \frac {-10+x^3}{x^3} \, dx\\ &=\frac {3}{2} \int \left (\frac {6}{x \left (-3+x^2 \log (x)\right )^2}+\frac {x}{\left (-3+x^2 \log (x)\right )^2}\right ) \, dx-\frac {3}{2} \int \left (-\frac {6}{x \left (3+x^2 \log (x)\right )^2}+\frac {x}{\left (3+x^2 \log (x)\right )^2}\right ) \, dx+3 \int \frac {1}{x \left (-3+x^2 \log (x)\right )} \, dx-3 \int \frac {1}{x \left (3+x^2 \log (x)\right )} \, dx+\int \left (1-\frac {10}{x^3}\right ) \, dx\\ &=\frac {5}{x^2}+x+\frac {3}{2} \int \frac {x}{\left (-3+x^2 \log (x)\right )^2} \, dx-\frac {3}{2} \int \frac {x}{\left (3+x^2 \log (x)\right )^2} \, dx+3 \int \frac {1}{x \left (-3+x^2 \log (x)\right )} \, dx-3 \int \frac {1}{x \left (3+x^2 \log (x)\right )} \, dx+9 \int \frac {1}{x \left (-3+x^2 \log (x)\right )^2} \, dx+9 \int \frac {1}{x \left (3+x^2 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.71 \begin {gather*} \frac {5}{x^2}+x+\frac {9}{9-x^4 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 45, normalized size = 1.45 \begin {gather*} -\frac {9 \, x^{3} - {\left (x^{7} + 5 \, x^{4}\right )} \log \relax (x)^{2} + 9 \, x^{2} + 45}{x^{6} \log \relax (x)^{2} - 9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 21, normalized size = 0.68 \begin {gather*} x - \frac {9}{x^{4} \log \relax (x)^{2} - 9} + \frac {5}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.81
method | result | size |
risch | \(\frac {x^{3}+5}{x^{2}}-\frac {9}{x^{4} \ln \relax (x )^{2}-9}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 45, normalized size = 1.45 \begin {gather*} -\frac {9 \, x^{3} - {\left (x^{7} + 5 \, x^{4}\right )} \log \relax (x)^{2} + 9 \, x^{2} + 45}{x^{6} \log \relax (x)^{2} - 9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.29, size = 21, normalized size = 0.68 \begin {gather*} x-\frac {9}{x^4\,{\ln \relax (x)}^2-9}+\frac {5}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.55 \begin {gather*} x - \frac {9}{x^{4} \log {\relax (x )}^{2} - 9} + \frac {5}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________