Optimal. Leaf size=32 \[ 8-e^{-x \left (e^x+\frac {e^3}{x}+2 x (-x+\log (x))\right )} (-5+x) \]
________________________________________________________________________________________
Rubi [B] time = 1.36, antiderivative size = 92, normalized size of antiderivative = 2.88, number of steps used = 1, number of rules used = 1, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2288} \begin {gather*} \frac {e^{2 x^3-e^x x-e^3} x^{-2 x^2} \left (6 x^3-32 x^2+e^x \left (-x^2+4 x+5\right )+4 \left (5 x-x^2\right ) \log (x)+10 x\right )}{-6 x^2+e^x x+2 x+e^x+4 x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-e^3-e^x x+2 x^3} x^{-2 x^2} \left (10 x-32 x^2+6 x^3+e^x \left (5+4 x-x^2\right )+4 \left (5 x-x^2\right ) \log (x)\right )}{e^x+2 x+e^x x-6 x^2+4 x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.12, size = 31, normalized size = 0.97 \begin {gather*} -e^{-e^3-e^x x+2 x^3} (-5+x) x^{-2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 28, normalized size = 0.88 \begin {gather*} -{\left (x - 5\right )} e^{\left (2 \, x^{3} - 2 \, x^{2} \log \relax (x) - x e^{x} - e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 52, normalized size = 1.62 \begin {gather*} -x e^{\left (2 \, x^{3} - 2 \, x^{2} \log \relax (x) - x e^{x} - e^{3}\right )} + 5 \, e^{\left (2 \, x^{3} - 2 \, x^{2} \log \relax (x) - x e^{x} - e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 32, normalized size = 1.00
method | result | size |
risch | \(\left (5-x \right ) x^{-2 x^{2}} {\mathrm e}^{-{\mathrm e}^{x} x -{\mathrm e}^{3}+2 x^{3}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 28, normalized size = 0.88 \begin {gather*} -{\left (x - 5\right )} e^{\left (2 \, x^{3} - 2 \, x^{2} \log \relax (x) - x e^{x} - e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.36, size = 31, normalized size = 0.97 \begin {gather*} -\frac {{\mathrm {e}}^{-x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-{\mathrm {e}}^3}\,{\mathrm {e}}^{2\,x^3}\,\left (x-5\right )}{x^{2\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 26, normalized size = 0.81 \begin {gather*} \left (5 - x\right ) e^{2 x^{3} - 2 x^{2} \log {\relax (x )} - x e^{x} - e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________