Optimal. Leaf size=24 \[ \frac {5-x}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 1.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x^2+e^{e^{\frac {4}{x^2}}} \left (e^{\frac {4}{x^2}} (120-24 x)-15 x^2\right )}{x^4+6 e^{e^{\frac {4}{x^2}}} x^4+9 e^{2 e^{\frac {4}{x^2}}} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 x^2+e^{e^{\frac {4}{x^2}}} \left (e^{\frac {4}{x^2}} (120-24 x)-15 x^2\right )}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4} \, dx\\ &=\int \left (-\frac {24 e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}} (-5+x)}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4}-\frac {5}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right ) x^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right ) x^2} \, dx\right )-24 \int \frac {e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}} (-5+x)}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4} \, dx\\ &=5 \operatorname {Subst}\left (\int \frac {1}{1+3 e^{e^{4 x^2}}} \, dx,x,\frac {1}{x}\right )-24 \int \left (-\frac {5 e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}}}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4}+\frac {e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}}}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^3}\right ) \, dx\\ &=5 \operatorname {Subst}\left (\int \frac {1}{1+3 e^{e^{4 x^2}}} \, dx,x,\frac {1}{x}\right )-24 \int \frac {e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}}}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^3} \, dx+120 \int \frac {e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}}}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4} \, dx\\ &=-\frac {1}{1+3 e^{e^{\frac {4}{x^2}}}}+5 \operatorname {Subst}\left (\int \frac {1}{1+3 e^{e^{4 x^2}}} \, dx,x,\frac {1}{x}\right )+120 \int \frac {e^{e^{\frac {4}{x^2}}+\frac {4}{x^2}}}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right )^2 x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 23, normalized size = 0.96 \begin {gather*} -\frac {-5+x}{\left (1+3 e^{e^{\frac {4}{x^2}}}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 19, normalized size = 0.79 \begin {gather*} -\frac {x - 5}{3 \, x e^{\left (e^{\left (\frac {4}{x^{2}}\right )}\right )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 19, normalized size = 0.79 \begin {gather*} -\frac {x - 5}{3 \, x e^{\left (e^{\left (\frac {4}{x^{2}}\right )}\right )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.92
method | result | size |
risch | \(-\frac {x -5}{x \left (1+3 \,{\mathrm e}^{{\mathrm e}^{\frac {4}{x^{2}}}}\right )}\) | \(22\) |
norman | \(\frac {3 x^{3} {\mathrm e}^{{\mathrm e}^{\frac {4}{x^{2}}}}+5 x^{2}}{x^{3} \left (1+3 \,{\mathrm e}^{{\mathrm e}^{\frac {4}{x^{2}}}}\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.79 \begin {gather*} -\frac {x - 5}{3 \, x e^{\left (e^{\left (\frac {4}{x^{2}}\right )}\right )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 21, normalized size = 0.88 \begin {gather*} -\frac {x-5}{x\,\left (3\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {4}{x^2}}}+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 15, normalized size = 0.62 \begin {gather*} \frac {5 - x}{3 x e^{e^{\frac {4}{x^{2}}}} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________