Optimal. Leaf size=27 \[ \log \left (4+\log \left (\frac {e^3 x^2}{\log (2) \left (-x^2+\log (16+x)\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 2, number of rules used = 2, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6688, 6684} \begin {gather*} \log \left (\log \left (-\frac {x^2}{\log (2) \left (x^2-\log (x+16)\right )}\right )+7\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x-2 (16+x) \log (16+x)}{x (16+x) \left (x^2-\log (16+x)\right ) \left (7+\log \left (-\frac {x^2}{\log (2) \left (x^2-\log (16+x)\right )}\right )\right )} \, dx\\ &=\log \left (7+\log \left (-\frac {x^2}{\log (2) \left (x^2-\log (16+x)\right )}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 26, normalized size = 0.96 \begin {gather*} \log \left (-7+\log (\log (2))-\log \left (-\frac {x^2}{x^2-\log (16+x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 28, normalized size = 1.04 \begin {gather*} \log \left (\log \left (-\frac {x^{2} e^{3}}{x^{2} \log \relax (2) - \log \relax (2) \log \left (x + 16\right )}\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 27, normalized size = 1.00 \begin {gather*} \log \left (-\log \left (x^{2} \log \relax (2) - \log \relax (2) \log \left (x + 16\right )\right ) + \log \left (-x^{2}\right ) + 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 244, normalized size = 9.04
method | result | size |
risch | \(\ln \left (\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{-\ln \left (x +16\right )+x^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{-\ln \left (x +16\right )+x^{2}}\right )}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i x^{2}}{-\ln \left (x +16\right )+x^{2}}\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{-\ln \left (x +16\right )+x^{2}}\right )^{2}}{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i x^{2}}{-\ln \left (x +16\right )+x^{2}}\right )^{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{-\ln \left (x +16\right )+x^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{-\ln \left (x +16\right )+x^{2}}\right )^{2}}{2}-i \pi -7+\ln \left (\ln \relax (2)\right )-2 \ln \relax (x )+\ln \left (-\ln \left (x +16\right )+x^{2}\right )\right )\) | \(244\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 21, normalized size = 0.78 \begin {gather*} \log \left (\log \left (-x^{2} + \log \left (x + 16\right )\right ) - 2 \, \log \relax (x) + \log \left (\log \relax (2)\right ) - 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.96, size = 27, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (\frac {x^2\,{\mathrm {e}}^3}{\ln \left (x+16\right )\,\ln \relax (2)-x^2\,\ln \relax (2)}\right )+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 26, normalized size = 0.96 \begin {gather*} \log {\left (\log {\left (\frac {x^{2} e^{3}}{- x^{2} \log {\relax (2 )} + \log {\relax (2 )} \log {\left (x + 16 \right )}} \right )} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________