Optimal. Leaf size=32 \[ e^{\frac {9 x \log ^2(3)}{-e^4+\frac {x+x^2}{1+3 x}}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.25, antiderivative size = 164, normalized size of antiderivative = 5.12, number of steps used = 1, number of rules used = 1, integrand size = 156, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {2288} \begin {gather*} -\frac {\left (2 x^3-e^4 \left (9 x^3+6 x^2+x\right )\right ) \exp \left (\frac {9 \left (3 x^2+x\right ) \log ^2(3)}{x^2+x-e^4 (3 x+1)}\right )}{\left (x^4+2 x^3+x^2+e^8 \left (9 x^2+6 x+1\right )-2 e^4 \left (3 x^3+4 x^2+x\right )\right ) \left (\frac {\left (2 x-3 e^4+1\right ) \left (3 x^2+x\right )}{\left (x^2+x-e^4 (3 x+1)\right )^2}-\frac {6 x+1}{x^2+x-e^4 (3 x+1)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\exp \left (\frac {9 \left (x+3 x^2\right ) \log ^2(3)}{x+x^2-e^4 (1+3 x)}\right ) \left (2 x^3-e^4 \left (x+6 x^2+9 x^3\right )\right )}{\left (x^2+2 x^3+x^4+e^8 \left (1+6 x+9 x^2\right )-2 e^4 \left (x+4 x^2+3 x^3\right )\right ) \left (\frac {\left (1-3 e^4+2 x\right ) \left (x+3 x^2\right )}{\left (x+x^2-e^4 (1+3 x)\right )^2}-\frac {1+6 x}{x+x^2-e^4 (1+3 x)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 34, normalized size = 1.06 \begin {gather*} e^{\frac {9 x (1+3 x) \log ^2(3)}{x (1+x)-e^4 (1+3 x)}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 32, normalized size = 1.00 \begin {gather*} x e^{\left (\frac {9 \, {\left (3 \, x^{2} + x\right )} \log \relax (3)^{2}}{x^{2} - {\left (3 \, x + 1\right )} e^{4} + x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 37, normalized size = 1.16 \begin {gather*} x e^{\left (\frac {9 \, {\left (3 \, x^{2} \log \relax (3)^{2} + x \log \relax (3)^{2}\right )}}{x^{2} - 3 \, x e^{4} + x - e^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 34, normalized size = 1.06
method | result | size |
gosper | \(x \,{\mathrm e}^{-\frac {9 x \left (3 x +1\right ) \ln \relax (3)^{2}}{3 x \,{\mathrm e}^{4}-x^{2}+{\mathrm e}^{4}-x}}\) | \(34\) |
risch | \(x \,{\mathrm e}^{-\frac {9 x \left (3 x +1\right ) \ln \relax (3)^{2}}{3 x \,{\mathrm e}^{4}-x^{2}+{\mathrm e}^{4}-x}}\) | \(34\) |
norman | \(\frac {x \,{\mathrm e}^{4} {\mathrm e}^{\frac {\left (-27 x^{2}-9 x \right ) \ln \relax (3)^{2}}{\left (3 x +1\right ) {\mathrm e}^{4}-x^{2}-x}}+\left (3 \,{\mathrm e}^{4}-1\right ) x^{2} {\mathrm e}^{\frac {\left (-27 x^{2}-9 x \right ) \ln \relax (3)^{2}}{\left (3 x +1\right ) {\mathrm e}^{4}-x^{2}-x}}-x^{3} {\mathrm e}^{\frac {\left (-27 x^{2}-9 x \right ) \ln \relax (3)^{2}}{\left (3 x +1\right ) {\mathrm e}^{4}-x^{2}-x}}}{3 x \,{\mathrm e}^{4}-x^{2}+{\mathrm e}^{4}-x}\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 91, normalized size = 2.84 \begin {gather*} x e^{\left (\frac {81 \, x e^{4} \log \relax (3)^{2}}{x^{2} - x {\left (3 \, e^{4} - 1\right )} - e^{4}} - \frac {18 \, x \log \relax (3)^{2}}{x^{2} - x {\left (3 \, e^{4} - 1\right )} - e^{4}} + \frac {27 \, e^{4} \log \relax (3)^{2}}{x^{2} - x {\left (3 \, e^{4} - 1\right )} - e^{4}} + 27 \, \log \relax (3)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.05, size = 37, normalized size = 1.16 \begin {gather*} x\,{\mathrm {e}}^{\frac {27\,{\ln \relax (3)}^2\,x^2+9\,{\ln \relax (3)}^2\,x}{x-{\mathrm {e}}^4-3\,x\,{\mathrm {e}}^4+x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.98, size = 31, normalized size = 0.97 \begin {gather*} x e^{\frac {\left (- 27 x^{2} - 9 x\right ) \log {\relax (3 )}^{2}}{- x^{2} - x + \left (3 x + 1\right ) e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________