Optimal. Leaf size=30 \[ \frac {x^2}{2}-\log \left (e^x+4 e^{3 x+\frac {30 \log (x)}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-x^2+x^3\right )+e^{\frac {3 x^2+30 \log (x)}{x}} \left (-120-12 x^2+4 x^3+120 \log (x)\right )}{e^x x^2+4 e^{\frac {3 x^2+30 \log (x)}{x}} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x^2+x^3+4 e^{2 x} x^{30/x} \left (-30-3 x^2+x^3+30 \log (x)\right )}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx\\ &=\int \left (\frac {2 \left (15+x^2-15 \log (x)\right )}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )}+\frac {-30-3 x^2+x^3+30 \log (x)}{x^2}\right ) \, dx\\ &=2 \int \frac {15+x^2-15 \log (x)}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+\int \frac {-30-3 x^2+x^3+30 \log (x)}{x^2} \, dx\\ &=2 \int \left (\frac {1}{1+4 e^{2 x} x^{30/x}}+\frac {15}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )}-\frac {15 \log (x)}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )}\right ) \, dx+\int \left (\frac {-30-3 x^2+x^3}{x^2}+\frac {30 \log (x)}{x^2}\right ) \, dx\\ &=2 \int \frac {1}{1+4 e^{2 x} x^{30/x}} \, dx+30 \int \frac {1}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+30 \int \frac {\log (x)}{x^2} \, dx-30 \int \frac {\log (x)}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+\int \frac {-30-3 x^2+x^3}{x^2} \, dx\\ &=-\frac {30}{x}-\frac {30 \log (x)}{x}+2 \int \frac {1}{1+4 e^{2 x} x^{30/x}} \, dx+30 \int \frac {1}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+30 \int \frac {\int \frac {1}{x^2+4 e^{2 x} x^{2+\frac {30}{x}}} \, dx}{x} \, dx-(30 \log (x)) \int \frac {1}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+\int \left (-3-\frac {30}{x^2}+x\right ) \, dx\\ &=-3 x+\frac {x^2}{2}-\frac {30 \log (x)}{x}+2 \int \frac {1}{1+4 e^{2 x} x^{30/x}} \, dx+30 \int \frac {1}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx+30 \int \frac {\int \frac {1}{x^2+4 e^{2 x} x^{2+\frac {30}{x}}} \, dx}{x} \, dx-(30 \log (x)) \int \frac {1}{x^2 \left (1+4 e^{2 x} x^{30/x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 30, normalized size = 1.00 \begin {gather*} -x+\frac {x^2}{2}-\log \left (1+4 e^{2 x} x^{30/x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 28, normalized size = 0.93 \begin {gather*} \frac {1}{2} \, x^{2} - \log \left (e^{x} + 4 \, e^{\left (\frac {3 \, {\left (x^{2} + 10 \, \log \relax (x)\right )}}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 28, normalized size = 0.93 \begin {gather*} \frac {1}{2} \, x^{2} - \log \left (e^{x} + 4 \, e^{\left (\frac {3 \, {\left (x^{2} + 10 \, \log \relax (x)\right )}}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 51, normalized size = 1.70
method | result | size |
risch | \(-\frac {30 \ln \relax (x )}{x}+\frac {x^{2}}{2}-3 x +\frac {30 \ln \relax (x )+3 x^{2}}{x}-\ln \left (\frac {{\mathrm e}^{x}}{4}+x^{\frac {30}{x}} {\mathrm e}^{3 x}\right )\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 34, normalized size = 1.13 \begin {gather*} \frac {1}{2} \, x^{2} - 3 \, x - \log \left (\frac {1}{4} \, {\left (4 \, e^{\left (2 \, x + \frac {30 \, \log \relax (x)}{x}\right )} + 1\right )} e^{\left (-2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 26, normalized size = 0.87 \begin {gather*} \frac {x^2}{2}-\ln \left (\frac {{\mathrm {e}}^x}{4}+x^{30/x}\,{\mathrm {e}}^{3\,x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 24, normalized size = 0.80 \begin {gather*} \frac {x^{2}}{2} - \log {\left (\frac {e^{x}}{4} + e^{\frac {3 x^{2} + 30 \log {\relax (x )}}{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________