Optimal. Leaf size=24 \[ x+\frac {1}{8} \left (-3-e^{-x^2} (5+x)\right )-\log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {12, 6742, 2205, 2209, 2212} \begin {gather*} -\frac {1}{8} e^{-x^2} x-\frac {5 e^{-x^2}}{8}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2209
Rule 2212
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int e^{-x^2} \left (-1+8 e^{x^2}+10 x+2 x^2\right ) \, dx\\ &=\frac {1}{8} \int \left (8-e^{-x^2}+10 e^{-x^2} x+2 e^{-x^2} x^2\right ) \, dx\\ &=x-\frac {1}{8} \int e^{-x^2} \, dx+\frac {1}{4} \int e^{-x^2} x^2 \, dx+\frac {5}{4} \int e^{-x^2} x \, dx\\ &=-\frac {5 e^{-x^2}}{8}+x-\frac {1}{8} e^{-x^2} x-\frac {1}{16} \sqrt {\pi } \text {erf}(x)+\frac {1}{8} \int e^{-x^2} \, dx\\ &=-\frac {5 e^{-x^2}}{8}+x-\frac {1}{8} e^{-x^2} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{8} \left (-5 e^{-x^2}+8 x-e^{-x^2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 20, normalized size = 0.83 \begin {gather*} \frac {1}{8} \, {\left (8 \, x e^{\left (x^{2}\right )} - x - 5\right )} e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 13, normalized size = 0.54 \begin {gather*} -\frac {1}{8} \, {\left (x + 5\right )} e^{\left (-x^{2}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.67
method | result | size |
risch | \(x +\frac {\left (-x -5\right ) {\mathrm e}^{-x^{2}}}{8}\) | \(16\) |
norman | \(\left (-\frac {5}{8}+{\mathrm e}^{x^{2}} x -\frac {x}{8}\right ) {\mathrm e}^{-x^{2}}\) | \(19\) |
default | \(x -\frac {5 \,{\mathrm e}^{-x^{2}}}{8}-\frac {x \,{\mathrm e}^{-x^{2}}}{8}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 0.79 \begin {gather*} -\frac {1}{8} \, x e^{\left (-x^{2}\right )} + x - \frac {5}{8} \, e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 19, normalized size = 0.79 \begin {gather*} x-\frac {5\,{\mathrm {e}}^{-x^2}}{8}-\frac {x\,{\mathrm {e}}^{-x^2}}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.50 \begin {gather*} x + \frac {\left (- x - 5\right ) e^{- x^{2}}}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________