Optimal. Leaf size=26 \[ \frac {x}{\frac {1}{5} x (5+x)+5 \log (x) (-5-\log (3)+\log (\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {500-5 x^2+125 \log (3)+(-625-125 \log (3)) \log (x)+(-125+125 \log (x)) \log (\log (x))}{25 x^2+10 x^3+x^4+\left (-1250 x-250 x^2+\left (-250 x-50 x^2\right ) \log (3)\right ) \log (x)+\left (15625+6250 \log (3)+625 \log ^2(3)\right ) \log ^2(x)+\left (\left (250 x+50 x^2\right ) \log (x)+(-6250-1250 \log (3)) \log ^2(x)\right ) \log (\log (x))+625 \log ^2(x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-x^2+100 \left (1+\frac {\log (3)}{4}\right )-25 \log (x) (5+\log (3)-\log (\log (x)))-25 \log (\log (x))\right )}{\left (x (5+x)+25 \log (x) \left (-5+\log \left (\frac {\log (x)}{3}\right )\right )\right )^2} \, dx\\ &=5 \int \frac {-x^2+100 \left (1+\frac {\log (3)}{4}\right )-25 \log (x) (5+\log (3)-\log (\log (x)))-25 \log (\log (x))}{\left (x (5+x)+25 \log (x) \left (-5+\log \left (\frac {\log (x)}{3}\right )\right )\right )^2} \, dx\\ &=5 \int \left (-\frac {x^2}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}+\frac {25 (4+\log (3))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}-\frac {125 \left (1+\frac {\log (3)}{5}\right ) \log (x)}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}+\frac {25 (-1+\log (x)) \log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {x^2}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\right )+125 \int \frac {(-1+\log (x)) \log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx+(125 (4+\log (3))) \int \frac {1}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx-(125 (5+\log (3))) \int \frac {\log (x)}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\\ &=-\left (5 \int \frac {x^2}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\right )+125 \int \left (-\frac {\log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}+\frac {\log (x) \log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2}\right ) \, dx+(125 (4+\log (3))) \int \frac {1}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx-(125 (5+\log (3))) \int \frac {\log (x)}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\\ &=-\left (5 \int \frac {x^2}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\right )-125 \int \frac {\log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx+125 \int \frac {\log (x) \log (\log (x))}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx+(125 (4+\log (3))) \int \frac {1}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx-(125 (5+\log (3))) \int \frac {\log (x)}{\left (5 x+x^2-125 \log (x)+25 \log (x) \log \left (\frac {\log (x)}{3}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 24, normalized size = 0.92 \begin {gather*} \frac {5 x}{x (5+x)+25 \log (x) \left (-5+\log \left (\frac {\log (x)}{3}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 27, normalized size = 1.04 \begin {gather*} \frac {5 \, x}{x^{2} - 25 \, {\left (\log \relax (3) + 5\right )} \log \relax (x) + 25 \, \log \relax (x) \log \left (\log \relax (x)\right ) + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 29, normalized size = 1.12 \begin {gather*} \frac {5 \, x}{x^{2} - 25 \, \log \relax (3) \log \relax (x) + 25 \, \log \relax (x) \log \left (\log \relax (x)\right ) + 5 \, x - 125 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.23
method | result | size |
risch | \(-\frac {5 x}{25 \ln \relax (3) \ln \relax (x )-x^{2}-25 \ln \relax (x ) \ln \left (\ln \relax (x )\right )-5 x +125 \ln \relax (x )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 27, normalized size = 1.04 \begin {gather*} \frac {5 \, x}{x^{2} - 25 \, {\left (\log \relax (3) + 5\right )} \log \relax (x) + 25 \, \log \relax (x) \log \left (\log \relax (x)\right ) + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {125\,\ln \relax (3)+\ln \left (\ln \relax (x)\right )\,\left (125\,\ln \relax (x)-125\right )-\ln \relax (x)\,\left (125\,\ln \relax (3)+625\right )-5\,x^2+500}{625\,{\ln \left (\ln \relax (x)\right )}^2\,{\ln \relax (x)}^2+\ln \left (\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (50\,x^2+250\,x\right )-{\ln \relax (x)}^2\,\left (1250\,\ln \relax (3)+6250\right )\right )+25\,x^2+10\,x^3+x^4-\ln \relax (x)\,\left (1250\,x+\ln \relax (3)\,\left (50\,x^2+250\,x\right )+250\,x^2\right )+{\ln \relax (x)}^2\,\left (6250\,\ln \relax (3)+625\,{\ln \relax (3)}^2+15625\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 32, normalized size = 1.23 \begin {gather*} \frac {5 x}{x^{2} + 5 x + 25 \log {\relax (x )} \log {\left (\log {\relax (x )} \right )} - 125 \log {\relax (x )} - 25 \log {\relax (3 )} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________